changeset 930:0e0608b1953b

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 23 Oct 2022 23:29:30 +0900
parents a6d97e6e5309
children 307ad8807963
files src/zorn.agda src/zorn1.agda
diffstat 2 files changed, 790 insertions(+), 13 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Sat Oct 22 18:26:16 2022 +0900
+++ b/src/zorn.agda	Sun Oct 23 23:29:30 2022 +0900
@@ -1427,35 +1427,46 @@
           msup = ZChain.minsup zc (o<→≤ d<A) 
           sd=ms : supf d ≡ MinSUP.sup ( ZChain.minsup zc (o<→≤ d<A) )
           sd=ms = ZChain.supf-is-minsup zc (o<→≤ d<A)
+          -- z26 : {x : Ordinal } → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) x
+          --     → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) c) x ∨ odef (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) x 
+          -- z26 = ?
           is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd)
           is-sup = record { x<sup = z22 } where
-               -- 
                z23 : {z : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) z → (z ≡ MinSUP.sup spd) ∨ (z << MinSUP.sup spd)
                z23 lt = MinSUP.x<sup spd lt
                z22 :  {y : Ordinal} → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) y →
                    (y ≡ MinSUP.sup spd) ∨ (y << MinSUP.sup spd)
-               z22 {y} zy = ?
-               -- with MinSUP.x<sup spd ? -- (subst (λ k → odef _ k ) (sym &iso) zy)
-               -- ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso y=p )
-               -- ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p )
+               z22 {a} ⟪ aa , ch-init fc ⟫ = ?
+               z22 {a} ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ?
+                    -- u<x    : ZChain.supf zc u o< ZChain.supf zc d
+                    --     supf u o< spuf c → order
           not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) d (cf nmx)
           not-hasprev hp = ? where
                y : Ordinal
                y = HasPrev.y hp
                z24 : y << d
                z24 = subst (λ k → y <<  k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) ))
+               -- z26 : {x : Ordinal } → odef (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) x → (x ≡ d ) ∨ (x << d )  
+               -- z26 lt with MinSUP.x<sup spd (subst (λ k → odef _ k ) ? lt)
+               -- ... | case1 eq = ?
+               -- ... | case2 lt = ?
+               -- z25 : {x : Ordinal } → odef (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) x → (x ≡ y ) ∨ (x << y )  
+               -- z25 {x} (init au eq ) = ?   -- sup c = x, cf y ≡ d, sup c =< d
+               -- z25  (fsuc x lt) = ?        -- cf (sup c) 
           sd=d : supf d ≡ d
           sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫
-          sc<d : supf c << d
-          sc<d = ? where
-              z21 = proj1 ( cf-is-<-monotonic nmx ? ? )
-          sco<d : supf c o< supf d
-          sco<d = ?
+          sc<sd : supf c << supf d
+          sc<sd = ? 
+              -- z21 = proj1 ( cf-is-<-monotonic nmx ? ? )
+          -- sco<d : supf c o< supf d
+          -- sco<d with osuc-≡< ( ZChain.supf-<= zc (case2 sc<sd ) )
+          -- ... | case1 eq = ⊥-elim ( <-irr eq sc<sd )
+          -- ... | case2 lt = lt
 
           ss<sa : supf c o< supf (& A)
-          ss<sa with osuc-≡< ( ZChain.supf-mono zc ? )
-          ... | case2 lt = lt
-          ... | case1 eq = ? -- where
+          ss<sa = ? -- with osuc-≡< ( ZChain.supf-mono zc (o<→≤ ( ∈∧P→o< ⟪ SUP.as sp0 , lift true ⟫) ))
+          -- ... | case2 lt = lt
+          -- ... | case1 eq = ? -- where
      zorn00 : Maximal A 
      zorn00 with is-o∅ ( & HasMaximal )  -- we have no Level (suc n) LEM 
      ... | no not = record { maximal = ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ; as = zorn01 ; ¬maximal<x  = zorn02 } where
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/zorn1.agda	Sun Oct 23 23:29:30 2022 +0900
@@ -0,0 +1,766 @@
+{-# OPTIONS --allow-unsolved-metas #-}
+open import Level hiding ( suc ; zero )
+open import Ordinals
+open import Relation.Binary 
+open import Relation.Binary.Core
+open import Relation.Binary.PropositionalEquality
+import OD 
+module zorn1 {n : Level } (O : Ordinals {n}) (_<_ : (x y : OD.HOD O ) → Set n ) (PO : IsStrictPartialOrder _≡_ _<_ ) where
+
+--
+-- Zorn-lemma : { A : HOD } 
+--     → o∅ o< & A 
+--     → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → SUP A B   ) -- SUP condition
+--     → Maximal A 
+--
+
+open import zf
+open import logic
+-- open import partfunc {n} O
+
+open import Relation.Nullary 
+open import Data.Empty 
+import BAlgbra 
+
+open import Data.Nat hiding ( _<_ ; _≤_ )
+open import Data.Nat.Properties 
+open import nat 
+
+
+open inOrdinal O
+open OD O
+open OD.OD
+open ODAxiom odAxiom
+import OrdUtil
+import ODUtil
+open Ordinals.Ordinals  O
+open Ordinals.IsOrdinals isOrdinal
+open Ordinals.IsNext isNext
+open OrdUtil O
+open ODUtil O
+
+
+import ODC
+
+open _∧_
+open _∨_
+open Bool
+
+open HOD
+
+--
+-- Partial Order on HOD ( possibly limited in A )
+--
+
+_<<_ : (x y : Ordinal ) → Set n 
+x << y = * x < * y
+
+_<=_ : (x y : Ordinal ) → Set n    -- we can't use * x ≡ * y, it is Set (Level.suc n). Level (suc n) troubles Chain
+x <= y = (x ≡ y ) ∨ ( * x < * y )
+
+POO : IsStrictPartialOrder _≡_ _<<_ 
+POO = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } 
+   ; trans = IsStrictPartialOrder.trans PO 
+   ; irrefl = λ x=y x<y → IsStrictPartialOrder.irrefl PO (cong (*) x=y) x<y
+   ; <-resp-≈ =  record { fst = λ {x} {y} {y1} y=y1 xy1 → subst (λ k → x << k ) y=y1 xy1 ; snd = λ {x} {x1} {y} x=x1 x1y → subst (λ k → k << x ) x=x1 x1y } } 
+ 
+_≤_ : (x y : HOD) → Set (Level.suc n)
+x ≤ y = ( x ≡ y ) ∨ ( x < y )
+
+≤-ftrans : {x y z : HOD} → x ≤ y → y ≤ z → x ≤ z 
+≤-ftrans {x} {y} {z} (case1 refl ) (case1 refl ) = case1 refl
+≤-ftrans {x} {y} {z} (case1 refl ) (case2 y<z) = case2 y<z
+≤-ftrans {x} {_} {z} (case2 x<y ) (case1 refl ) = case2 x<y
+≤-ftrans {x} {y} {z} (case2 x<y) (case2 y<z) = case2 ( IsStrictPartialOrder.trans PO x<y y<z )
+
+<-ftrans : {x y z : Ordinal } →  x <=  y →  y <=  z →  x <=  z 
+<-ftrans {x} {y} {z} (case1 refl ) (case1 refl ) = case1 refl
+<-ftrans {x} {y} {z} (case1 refl ) (case2 y<z) = case2 y<z
+<-ftrans {x} {_} {z} (case2 x<y ) (case1 refl ) = case2 x<y
+<-ftrans {x} {y} {z} (case2 x<y) (case2 y<z) = case2 ( IsStrictPartialOrder.trans PO x<y y<z )
+
+<=to≤ : {x y : Ordinal } → x <= y → * x ≤ * y 
+<=to≤ (case1 eq) = case1 (cong (*) eq)
+<=to≤ (case2 lt) = case2 lt
+
+≤to<= : {x y : Ordinal } → * x ≤ * y → x <= y 
+≤to<= (case1 eq) = case1 ( subst₂ (λ j k → j ≡ k ) &iso &iso  (cong (&) eq) )
+≤to<= (case2 lt) = case2 lt
+
+<-irr : {a b : HOD} → (a ≡ b ) ∨ (a < b ) → b < a → ⊥
+<-irr {a} {b} (case1 a=b) b<a = IsStrictPartialOrder.irrefl PO   (sym a=b) b<a
+<-irr {a} {b} (case2 a<b) b<a = IsStrictPartialOrder.irrefl PO   refl
+          (IsStrictPartialOrder.trans PO     b<a a<b)
+
+ptrans =  IsStrictPartialOrder.trans PO
+
+open _==_
+open _⊆_
+
+-- <-TransFinite : {A x : HOD} → {P : HOD → Set n} → x ∈ A 
+--     → ({x : HOD} → A ∋ x →  ({y : HOD} → A ∋  y → y < x → P y ) → P x) → P x
+-- <-TransFinite = ?
+
+--
+-- Closure of ≤-monotonic function f has total order
+--
+
+≤-monotonic-f : (A : HOD) → ( Ordinal → Ordinal ) → Set (Level.suc n)
+≤-monotonic-f A f = (x : Ordinal ) → odef A x → ( * x ≤ * (f x) ) ∧  odef A (f x )
+
+data FClosure (A : HOD) (f : Ordinal → Ordinal ) (s : Ordinal) : Ordinal → Set n where
+   init : {s1 : Ordinal } → odef A s → s ≡ s1  → FClosure A f s s1
+   fsuc : (x : Ordinal) ( p :  FClosure A f s x ) → FClosure A f s (f x)
+
+A∋fc : {A : HOD} (s : Ordinal) {y : Ordinal } (f : Ordinal → Ordinal) (mf : ≤-monotonic-f A f) → (fcy : FClosure A f s y ) → odef A y
+A∋fc {A} s f mf (init as refl ) = as
+A∋fc {A} s f mf (fsuc y fcy) = proj2 (mf y ( A∋fc {A} s  f mf fcy ) )
+
+A∋fcs : {A : HOD} (s : Ordinal) {y : Ordinal } (f : Ordinal → Ordinal) (mf : ≤-monotonic-f A f) → (fcy : FClosure A f s y ) → odef A s
+A∋fcs {A} s f mf (init as refl) = as
+A∋fcs {A} s f mf (fsuc y fcy) = A∋fcs {A} s f mf fcy 
+
+s≤fc : {A : HOD} (s : Ordinal ) {y : Ordinal } (f : Ordinal → Ordinal) (mf : ≤-monotonic-f A f) → (fcy : FClosure A f s y ) → * s ≤ * y
+s≤fc {A} s {.s} f mf (init x refl ) = case1 refl
+s≤fc {A} s {.(f x)} f mf (fsuc x fcy) with proj1 (mf x (A∋fc s f mf fcy ) )
+... | case1 x=fx = subst (λ k → * s ≤ * k ) (*≡*→≡ x=fx) ( s≤fc {A} s f mf fcy )
+... | case2 x<fx with s≤fc {A} s f mf fcy 
+... | case1 s≡x = case2 ( subst₂ (λ j k → j < k ) (sym s≡x) refl x<fx )
+... | case2 s<x = case2 ( IsStrictPartialOrder.trans PO s<x x<fx )
+
+fcn : {A : HOD} (s : Ordinal) { x : Ordinal} {f : Ordinal → Ordinal} → (mf : ≤-monotonic-f A f) → FClosure A f s x → ℕ
+fcn s mf (init as refl) = zero
+fcn {A} s {x} {f} mf (fsuc y p) with proj1 (mf y (A∋fc s f mf p))
+... | case1 eq = fcn s mf p
+... | case2 y<fy = suc (fcn s mf p )
+
+fcn-inject : {A : HOD} (s : Ordinal) { x y : Ordinal} {f : Ordinal → Ordinal} → (mf : ≤-monotonic-f A f) 
+     → (cx : FClosure A f s x ) (cy : FClosure A f s y ) → fcn s mf cx  ≡ fcn s mf cy → * x ≡ * y
+fcn-inject {A} s {x} {y} {f} mf cx cy eq = fc00 (fcn s mf cx) (fcn s mf cy) eq cx cy refl refl where
+     fc06 : {y : Ordinal } { as : odef A s } (eq : s ≡ y  ) { j : ℕ } →  ¬ suc j ≡ fcn {A} s {y} {f} mf (init as eq )
+     fc06 {x} {y} refl {j} not = fc08 not where
+        fc08 :  {j : ℕ} → ¬ suc j ≡ 0 
+        fc08 ()
+     fc07 : {x : Ordinal } (cx : FClosure A f s x ) → 0 ≡ fcn s mf cx → * s ≡ * x
+     fc07 {x} (init as refl) eq = refl
+     fc07 {.(f x)} (fsuc x cx) eq with proj1 (mf x (A∋fc s f mf cx ) )
+     ... | case1 x=fx = subst (λ k → * s ≡  k ) x=fx ( fc07 cx eq )
+     -- ... | case2 x<fx = ?
+     fc00 :  (i j : ℕ ) → i ≡ j  →  {x y : Ordinal } → (cx : FClosure A f s x ) (cy : FClosure A f s y ) → i ≡ fcn s mf cx  → j ≡ fcn s mf cy → * x ≡ * y
+     fc00 (suc i) (suc j) x cx (init x₃ x₄) x₁ x₂ = ⊥-elim ( fc06 x₄ x₂ )
+     fc00 (suc i) (suc j) x (init x₃ x₄) (fsuc x₅ cy) x₁ x₂ = ⊥-elim ( fc06 x₄ x₁ )
+     fc00 zero zero refl (init _ refl) (init x₁ refl) i=x i=y = refl
+     fc00 zero zero refl (init as refl) (fsuc y cy) i=x i=y with proj1 (mf y (A∋fc s f mf cy ) )
+     ... | case1 y=fy = subst (λ k → * s ≡ k ) y=fy (fc07 cy i=y) -- ( fc00 zero zero refl (init as refl) cy i=x i=y )
+     fc00 zero zero refl (fsuc x cx) (init as refl) i=x i=y with proj1 (mf x (A∋fc s f mf cx ) )
+     ... | case1 x=fx = subst (λ k → k ≡ * s ) x=fx (sym (fc07 cx i=x)) -- ( fc00 zero zero refl cx (init as refl) i=x i=y )
+     fc00 zero zero refl (fsuc x cx) (fsuc y cy) i=x i=y with proj1 (mf x (A∋fc s f mf cx ) ) | proj1 (mf y (A∋fc s f mf cy ) )
+     ... | case1 x=fx  | case1 y=fy = subst₂ (λ j k → j ≡ k ) x=fx y=fy ( fc00 zero zero refl cx cy  i=x i=y )
+     fc00 (suc i) (suc j) i=j {.(f x)} {.(f y)} (fsuc x cx) (fsuc y cy) i=x j=y with proj1 (mf x (A∋fc s f mf cx ) ) | proj1 (mf y (A∋fc s f mf cy ) )
+     ... | case1 x=fx | case1 y=fy = subst₂ (λ j k → j ≡ k ) x=fx y=fy ( fc00 (suc i) (suc j) i=j cx cy  i=x j=y )
+     ... | case1 x=fx | case2 y<fy = subst (λ k → k ≡ * (f y)) x=fx (fc02 x cx i=x) where
+          fc02 : (x1 : Ordinal) → (cx1 : FClosure A f s x1 ) →  suc i ≡ fcn s mf cx1 → * x1 ≡ * (f y)
+          fc02 x1 (init x₁ x₂) x = ⊥-elim (fc06 x₂ x)
+          fc02 .(f x1) (fsuc x1 cx1) i=x1 with proj1 (mf x1 (A∋fc s f mf cx1 ) )
+          ... | case1 eq = trans (sym eq) ( fc02  x1 cx1 i=x1 )  -- derefence while f x ≡ x
+          ... | case2 lt = subst₂ (λ j k → * (f j) ≡ * (f k )) &iso &iso ( cong (λ k → * ( f (& k ))) fc04) where
+               fc04 : * x1 ≡ * y
+               fc04 = fc00 i j (cong pred i=j) cx1 cy (cong pred i=x1) (cong pred j=y)
+     ... | case2 x<fx | case1 y=fy = subst (λ k → * (f x) ≡ k ) y=fy (fc03 y cy j=y) where
+          fc03 : (y1 : Ordinal) → (cy1 : FClosure A f s y1 ) →  suc j ≡ fcn s mf cy1 → * (f x)  ≡ * y1
+          fc03 y1 (init x₁ x₂) x = ⊥-elim (fc06 x₂ x)
+          fc03 .(f y1) (fsuc y1 cy1) j=y1 with proj1 (mf y1 (A∋fc s f mf cy1 ) )
+          ... | case1 eq = trans ( fc03  y1 cy1 j=y1 ) eq 
+          ... | case2 lt = subst₂ (λ j k → * (f j) ≡ * (f k )) &iso &iso ( cong (λ k → * ( f (& k ))) fc05) where
+               fc05 : * x ≡ * y1
+               fc05 = fc00 i j (cong pred i=j) cx cy1 (cong pred i=x) (cong pred j=y1)
+     ... | case2 x₁ | case2 x₂ = subst₂ (λ j k → * (f j) ≡ * (f k) ) &iso &iso (cong (λ k → * (f (& k))) (fc00 i j (cong pred i=j) cx cy (cong pred i=x) (cong pred j=y)))
+
+
+fcn-< : {A : HOD} (s : Ordinal ) { x y : Ordinal} {f : Ordinal → Ordinal} → (mf : ≤-monotonic-f A f)
+    → (cx : FClosure A f s x ) (cy : FClosure A f s y ) → fcn s mf cx Data.Nat.< fcn s mf cy  → * x < * y
+fcn-< {A} s {x} {y} {f} mf cx cy x<y = fc01 (fcn s mf cy) cx cy refl x<y where
+     fc06 : {y : Ordinal } { as : odef A s } (eq : s ≡ y  ) { j : ℕ } →  ¬ suc j ≡ fcn {A} s {y} {f} mf (init as eq )
+     fc06 {x} {y} refl {j} not = fc08 not where
+        fc08 :  {j : ℕ} → ¬ suc j ≡ 0 
+        fc08 ()
+     fc01 : (i : ℕ ) → {y : Ordinal } → (cx : FClosure A f s x ) (cy : FClosure A f s y ) → (i ≡ fcn s mf cy ) → fcn s mf cx Data.Nat.< i → * x < * y
+     fc01 (suc i) cx (init x₁ x₂) x (s≤s x₃) = ⊥-elim (fc06 x₂ x)
+     fc01 (suc i) {y} cx (fsuc y1 cy) i=y (s≤s x<i) with proj1 (mf y1 (A∋fc s f mf cy ) )
+     ... | case1 y=fy = subst (λ k → * x < k ) y=fy ( fc01 (suc i) {y1} cx cy i=y (s≤s x<i)  ) 
+     ... | case2 y<fy with <-cmp (fcn s mf cx ) i
+     ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> x<i c )
+     ... | tri≈ ¬a b ¬c = subst (λ k → k < * (f y1) ) (fcn-inject s mf cy cx (sym (trans b (cong pred i=y) ))) y<fy 
+     ... | tri< a ¬b ¬c = IsStrictPartialOrder.trans PO fc02 y<fy where
+          fc03 :  suc i ≡ suc (fcn s mf cy) → i ≡ fcn s mf cy
+          fc03 eq = cong pred eq 
+          fc02 :  * x < * y1 
+          fc02 =  fc01 i cx cy (fc03 i=y ) a
+
+
+fcn-cmp : {A : HOD} (s : Ordinal) { x y : Ordinal } (f : Ordinal → Ordinal) (mf : ≤-monotonic-f A f) 
+    → (cx : FClosure A f s x) → (cy : FClosure A f s y ) → Tri (* x < * y) (* x ≡ * y) (* y < * x )
+fcn-cmp {A} s {x} {y} f mf cx cy with <-cmp ( fcn s mf cx ) (fcn s mf cy )
+... | tri< a ¬b ¬c = tri< fc11 (λ eq → <-irr (case1 (sym eq)) fc11) (λ lt → <-irr (case2 fc11) lt) where
+      fc11 : * x < * y
+      fc11 = fcn-< {A} s {x} {y} {f} mf cx cy a
+... | tri≈ ¬a b ¬c = tri≈ (λ lt → <-irr (case1 (sym fc10)) lt) fc10 (λ lt → <-irr (case1 fc10) lt) where
+      fc10 : * x ≡ * y
+      fc10 = fcn-inject {A} s {x} {y} {f} mf cx cy b
+... | tri> ¬a ¬b c = tri> (λ lt → <-irr (case2 fc12) lt) (λ eq → <-irr (case1 eq) fc12) fc12  where 
+      fc12 : * y < * x
+      fc12 = fcn-< {A} s {y} {x} {f} mf cy cx c
+
+
+
+-- open import Relation.Binary.Properties.Poset as Poset
+
+IsTotalOrderSet : ( A : HOD ) → Set (Level.suc n)
+IsTotalOrderSet A = {a b : HOD} → odef A (& a) → odef A (& b)  → Tri (a < b) (a ≡ b) (b < a )
+
+⊆-IsTotalOrderSet : { A B : HOD } →  B ⊆ A  → IsTotalOrderSet A → IsTotalOrderSet B
+⊆-IsTotalOrderSet {A} {B} B⊆A T  ax ay = T (incl B⊆A ax) (incl B⊆A ay)
+
+_⊆'_ : ( A B : HOD ) → Set n
+_⊆'_ A B = {x : Ordinal } → odef A x → odef B x
+
+--
+-- inductive maxmum tree from x
+-- tree structure
+--
+
+record HasPrev (A B : HOD) (x : Ordinal ) ( f : Ordinal → Ordinal )  : Set n where
+   field
+      ax : odef A x
+      y : Ordinal
+      ay : odef B y
+      x=fy :  x ≡ f y 
+
+record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x)     : Set n where
+   field
+      x<sup   : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x )
+
+record SUP ( A B : HOD )  : Set (Level.suc n) where
+   field
+      sup : HOD
+      as : A ∋ sup
+      x<sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup )   -- B is Total, use positive
+
+--
+--  sup and its fclosure is in a chain HOD
+--    chain HOD is sorted by sup as Ordinal and <-ordered
+--    whole chain is a union of separated Chain
+--    minimum index is sup of y not ϕ 
+--
+
+record ChainP (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal) (u : Ordinal) : Set n where
+   field
+      fcy<sup  : {z : Ordinal } → FClosure A f y z → (z ≡ supf u) ∨ ( z << supf u ) 
+      order    : {s z1 : Ordinal} → (lt : supf s o< supf u ) → FClosure A f (supf s ) z1 → (z1 ≡ supf u ) ∨ ( z1 << supf u )
+      supu=u   : supf u ≡ u
+
+data UChain  ( A : HOD )    ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y )
+       (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where 
+    ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z
+    ch-is-sup  : (u : Ordinal) {z : Ordinal }  (u<x : supf u o< supf x) ( is-sup : ChainP A f mf ay supf u ) 
+        ( fc : FClosure A f (supf u) z ) → UChain A f mf ay supf x z
+
+--
+--         f (f ( ... (sup y))) f (f ( ... (sup z1)))
+--        /          |         /             |
+--       /           |        /              |
+--    sup y   <       sup z1          <    sup z2
+--           o<                      o<
+-- data UChain is total
+
+chain-total : (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal )
+   {s s1 a b : Ordinal } ( ca : UChain A f mf ay supf s a ) ( cb : UChain A f mf ay supf s1 b ) → Tri (* a < * b) (* a ≡ * b) (* b < * a )
+chain-total A f mf {y} ay supf {xa} {xb} {a} {b} ca cb = ct-ind xa xb ca cb where
+     ct-ind : (xa xb : Ordinal) → {a b : Ordinal} → UChain A f mf ay supf xa a → UChain A f mf ay supf xb b → Tri (* a < * b) (* a ≡ * b) (* b < * a)
+     ct-ind xa xb {a} {b} (ch-init fca) (ch-init fcb) = fcn-cmp y f mf fca fcb
+     ct-ind xa xb {a} {b} (ch-init fca) (ch-is-sup ub u≤x supb fcb) with ChainP.fcy<sup supb fca
+     ... | case1 eq with s≤fc (supf ub) f mf fcb
+     ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00  (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where
+          ct00 : * a ≡ * b
+          ct00 = trans (cong (*) eq) eq1
+     ... | case2 lt = tri< ct01  (λ eq → <-irr (case1 (sym eq)) ct01) (λ lt → <-irr (case2 ct01) lt)  where
+          ct01 : * a < * b 
+          ct01 = subst (λ k → * k < * b ) (sym eq) lt
+     ct-ind xa xb {a} {b} (ch-init fca) (ch-is-sup ub u≤x supb fcb) | case2 lt = tri< ct01  (λ eq → <-irr (case1 (sym eq)) ct01) (λ lt → <-irr (case2 ct01) lt)  where
+          ct00 : * a < * (supf ub)
+          ct00 = lt
+          ct01 : * a < * b 
+          ct01 with s≤fc (supf ub) f mf fcb
+          ... | case1 eq =  subst (λ k → * a < k ) eq ct00
+          ... | case2 lt =  IsStrictPartialOrder.trans POO ct00 lt
+     ct-ind xa xb {a} {b} (ch-is-sup ua u≤x supa fca) (ch-init fcb) with ChainP.fcy<sup supa fcb
+     ... | case1 eq with s≤fc (supf ua) f mf fca
+     ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00  (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where
+          ct00 : * a ≡ * b
+          ct00 = sym (trans (cong (*) eq) eq1 )
+     ... | case2 lt = tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01    where
+          ct01 : * b < * a 
+          ct01 = subst (λ k → * k < * a ) (sym eq) lt
+     ct-ind xa xb {a} {b} (ch-is-sup ua u≤x supa fca) (ch-init fcb) | case2 lt = tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01    where
+          ct00 : * b < * (supf ua)
+          ct00 = lt
+          ct01 : * b < * a 
+          ct01 with s≤fc (supf ua) f mf fca
+          ... | case1 eq =  subst (λ k → * b < k ) eq ct00
+          ... | case2 lt =  IsStrictPartialOrder.trans POO ct00 lt
+     ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) with trio< ua ub
+     ... | tri< a₁ ¬b ¬c with ChainP.order supb  (subst₂ (λ j k → j o< k ) (sym (ChainP.supu=u supa )) (sym (ChainP.supu=u supb )) a₁)  fca 
+     ... | case1 eq with s≤fc (supf ub) f mf fcb 
+     ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00  (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where
+          ct00 : * a ≡ * b
+          ct00 = trans (cong (*) eq) eq1
+     ... | case2 lt =  tri< ct02  (λ eq → <-irr (case1 (sym eq)) ct02) (λ lt → <-irr (case2 ct02) lt)  where
+          ct02 : * a < * b 
+          ct02 = subst (λ k → * k < * b ) (sym eq) lt
+     ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) | tri< a₁ ¬b ¬c | case2 lt = tri< ct02  (λ eq → <-irr (case1 (sym eq)) ct02) (λ lt → <-irr (case2 ct02) lt)  where
+          ct03 : * a < * (supf ub)
+          ct03 = lt
+          ct02 : * a < * b 
+          ct02 with s≤fc (supf ub) f mf fcb
+          ... | case1 eq =  subst (λ k → * a < k ) eq ct03
+          ... | case2 lt =  IsStrictPartialOrder.trans POO ct03 lt
+     ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x  supb fcb) | tri≈ ¬a  eq ¬c 
+         = fcn-cmp (supf ua) f mf fca (subst (λ k → FClosure A f k b ) (cong supf (sym eq)) fcb )
+     ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) | tri> ¬a ¬b c with ChainP.order supa (subst₂ (λ j k → j o< k ) (sym (ChainP.supu=u supb )) (sym (ChainP.supu=u supa )) c) fcb 
+     ... | case1 eq with s≤fc (supf ua) f mf fca 
+     ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00  (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where
+          ct00 : * a ≡ * b
+          ct00 = sym (trans (cong (*) eq) eq1)
+     ... | case2 lt =  tri> (λ lt → <-irr (case2 ct02) lt) (λ eq → <-irr (case1 eq) ct02) ct02    where
+          ct02 : * b < * a 
+          ct02 = subst (λ k → * k < * a ) (sym eq) lt
+     ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) | tri> ¬a ¬b c | case2 lt = tri> (λ lt → <-irr (case2 ct04) lt) (λ eq → <-irr (case1 (eq)) ct04) ct04    where
+          ct05 : * b < * (supf ua)
+          ct05 = lt
+          ct04 : * b < * a 
+          ct04 with s≤fc (supf ua) f mf fca
+          ... | case1 eq =  subst (λ k → * b < k ) eq ct05
+          ... | case2 lt =  IsStrictPartialOrder.trans POO ct05 lt
+
+∈∧P→o< :  {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A
+∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p )))
+
+-- Union of supf z which o< x
+--
+UnionCF : ( A : HOD )    ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) 
+    ( supf : Ordinal → Ordinal ) ( x : Ordinal ) → HOD
+UnionCF A f mf ay supf x
+   = record { od = record { def = λ z → odef A z ∧ UChain A f mf ay supf x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy }
+
+supf-inject0 : {x y : Ordinal } {supf : Ordinal → Ordinal } → (supf-mono : {x y : Ordinal } →  x o≤  y  → supf x o≤ supf y )   
+   → supf x o< supf y → x o<  y 
+supf-inject0 {x} {y} {supf} supf-mono sx<sy with trio< x y
+... | tri< a ¬b ¬c = a
+... | tri≈ ¬a refl ¬c = ⊥-elim ( o<¬≡ (cong supf refl) sx<sy )
+... | tri> ¬a ¬b y<x with osuc-≡< (supf-mono (o<→≤ y<x) )
+... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) sx<sy )
+... | case2 lt = ⊥-elim ( o<> sx<sy lt )
+
+record MinSUP ( A B : HOD )  : Set n where
+   field
+      sup : Ordinal
+      asm : odef A sup
+      x<sup : {x : Ordinal } → odef B x → (x ≡ sup ) ∨ (x << sup )   
+      minsup : { sup1 : Ordinal } → odef A sup1 
+         →  ( {x : Ordinal  } → odef B x → (x ≡ sup1 ) ∨ (x << sup1 ))  → sup o≤ sup1
+
+z09 : {b : Ordinal } { A : HOD } → odef A b → b o< & A
+z09 {b} {A} ab = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab))
+
+M→S  : { A : HOD } { f : Ordinal → Ordinal } {mf : ≤-monotonic-f A f} {y : Ordinal} {ay : odef A y}  { x : Ordinal }
+      →  (supf : Ordinal → Ordinal )
+      →  MinSUP A (UnionCF A f mf ay supf x)  
+      → SUP A (UnionCF A f mf ay supf x) 
+M→S {A} {f} {mf} {y} {ay} {x} supf ms = record { sup = * (MinSUP.sup ms) 
+        ; as = subst (λ k → odef A k) (sym &iso) (MinSUP.asm ms) ; x<sup = ms00 } where
+   msup = MinSUP.sup ms
+   ms00 : {z : HOD} → UnionCF A f mf ay supf x ∋ z → (z ≡ * msup) ∨ (z < * msup)
+   ms00 {z} uz with MinSUP.x<sup ms uz 
+   ... | case1 eq = case1 (subst (λ k → k ≡ _) *iso ( cong (*) eq))
+   ... | case2 lt = case2 (subst₂ (λ j k →  j < k ) *iso refl lt )
+
+
+chain-mono : {A : HOD}  ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f )  {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal ) 
+   (supf-mono : {x y : Ordinal } →  x o≤  y  → supf x o≤ supf y ) {a b c : Ordinal} → a o≤ b
+        → odef (UnionCF A f mf ay supf a) c → odef (UnionCF A f mf ay supf b) c
+chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ ua , ch-init fc  ⟫ = 
+        ⟪ ua , ch-init fc  ⟫ 
+chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ uaa ,  ch-is-sup ua ua<x is-sup fc  ⟫ =
+        ⟪ uaa , ch-is-sup ua (ordtrans<-≤ ua<x (supf-mono a≤b ) ) is-sup fc  ⟫ 
+
+record ZChain ( A : HOD )    ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f) 
+        {y : Ordinal} (ay : odef A y)  ( z : Ordinal ) : Set (Level.suc n) where
+   field
+      supf :  Ordinal → Ordinal 
+      sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z  
+           → IsSup A (UnionCF A f mf ay supf b) ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf b) b f) → supf b ≡ b 
+
+      asupf :  {x : Ordinal } → odef A (supf x)
+      supf-mono : {x y : Ordinal } → x o≤  y → supf x o≤ supf y
+      supf-< : {x y : Ordinal } → supf x o< supf  y → supf x << supf y
+      supfmax : {x : Ordinal } → z o< x → supf x ≡ supf z
+
+      minsup : {x : Ordinal } → x o≤ z  → MinSUP A (UnionCF A f mf ay supf x) 
+      supf-is-minsup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ MinSUP.sup ( minsup x≤z )
+      csupf : {b : Ordinal } → supf b o< z → odef (UnionCF A f mf ay supf z) (supf b) -- supf z is not an element of this chain
+
+   chain : HOD
+   chain = UnionCF A f mf ay supf z
+   chain⊆A : chain ⊆' A
+   chain⊆A = λ lt → proj1 lt
+   sup : {x : Ordinal } → x o≤ z  → SUP A (UnionCF A f mf ay supf x) 
+   sup {x} x≤z = M→S supf (minsup x≤z) 
+   -- supf-sup<minsup : {x : Ordinal } → (x≤z : x o≤ z) → & (SUP.sup (M→S supf (minsup x≤z) )) o≤ supf x ... supf-mono
+
+   chain∋init : odef chain y
+   chain∋init = ⟪ ay , ch-init (init ay refl)    ⟫
+   f-next : {a z : Ordinal} → odef (UnionCF A f mf ay supf z) a → odef (UnionCF A f mf ay supf z) (f a)
+   f-next {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc)  ⟫
+   f-next {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u u≤x is-sup (fsuc _ fc ) ⟫
+   initial : {z : Ordinal } → odef chain z → * y ≤ * z
+   initial {a} ⟪ aa , ua ⟫  with  ua
+   ... | ch-init fc = s≤fc y f mf fc
+   ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc)  where
+        zc7 : y <= supf u 
+        zc7 = ChainP.fcy<sup is-sup (init ay refl)
+   f-total : IsTotalOrderSet chain
+   f-total {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where 
+               uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
+               uz01 = chain-total A f mf ay supf ( (proj2 ca)) ( (proj2 cb)) 
+
+   supf-<= : {x y : Ordinal } → supf x <= supf  y → supf x o≤ supf y
+   supf-<= {x} {y} (case1 sx=sy) = o≤-refl0 sx=sy
+   supf-<= {x} {y} (case2 sx<sy) with trio< (supf x) (supf y)
+   ... | tri< a ¬b ¬c = o<→≤ a
+   ... | tri≈ ¬a b ¬c = o≤-refl0 b
+   ... | tri> ¬a ¬b c = ⊥-elim (<-irr (case2 sx<sy ) (supf-< c) )
+
+   supf-inject : {x y : Ordinal } → supf x o< supf y → x o<  y 
+   supf-inject {x} {y} sx<sy with trio< x y
+   ... | tri< a ¬b ¬c = a
+   ... | tri≈ ¬a refl ¬c = ⊥-elim ( o<¬≡ (cong supf refl) sx<sy )
+   ... | tri> ¬a ¬b y<x with osuc-≡< (supf-mono (o<→≤ y<x) )
+   ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) sx<sy )
+   ... | case2 lt = ⊥-elim ( o<> sx<sy lt )
+
+   fcy<sup  : {u w : Ordinal } → u o≤ z  → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf 
+   fcy<sup  {u} {w} u≤z fc with MinSUP.x<sup (minsup u≤z) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc)  
+       , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ 
+   ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso  (trans eq (sym (supf-is-minsup u≤z ) ) ))
+   ... | case2 lt = case2 (subst₂ (λ j k → j << k ) &iso (sym (supf-is-minsup u≤z )) lt )
+
+   -- ordering is not proved here but in ZChain1 
+
+record ZChain1 ( A : HOD )    ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f) 
+        {y : Ordinal} (ay : odef A y)  (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where
+   supf = ZChain.supf zc
+   field
+      is-max :  {a b : Ordinal } → (ca : odef (UnionCF A f mf ay supf z) a ) → supf b o< supf z  → (ab : odef A b) 
+          → HasPrev A (UnionCF A f mf ay supf z) b f ∨  IsSup A (UnionCF A f mf ay supf z) ab  
+          → * a < * b  → odef ((UnionCF A f mf ay supf z)) b
+
+record Maximal ( A : HOD )  : Set (Level.suc n) where
+   field
+      maximal : HOD
+      as : A ∋ maximal
+      ¬maximal<x : {x : HOD} → A ∋ x  → ¬ maximal < x       -- A is Partial, use negative
+
+init-uchain : (A : HOD)  ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f) {y : Ordinal } → (ay : odef A y ) 
+    { supf : Ordinal → Ordinal } { x : Ordinal } → odef (UnionCF A f mf ay supf x) y
+init-uchain A f mf ay = ⟪ ay , ch-init (init ay refl)   ⟫
+
+Zorn-lemma : { A : HOD } 
+    → o∅ o< & A 
+    → ( ( B : HOD) → (B⊆A : B ⊆' A) → IsTotalOrderSet B → SUP A B   ) -- SUP condition
+    → Maximal A 
+Zorn-lemma {A}  0<A supP = zorn00 where
+     <-irr0 : {a b : HOD} → A ∋ a → A ∋ b  → (a ≡ b ) ∨ (a < b ) → b < a → ⊥
+     <-irr0 {a} {b} A∋a A∋b = <-irr
+     z07 :   {y : Ordinal} {A : HOD } → {P : Set n} → odef A y ∧ P → y o< & A
+     z07 {y} {A} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p )))
+     s : HOD
+     s = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
+     as : A ∋ * ( & s  )
+     as =  subst (λ k → odef A (& k) ) (sym *iso) ( ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A ))  )
+     as0 : odef A  (& s  )
+     as0 =  subst (λ k → odef A k ) &iso as
+     s<A : & s o< & A
+     s<A = c<→o< (subst (λ k → odef A (& k) ) *iso as )
+     HasMaximal : HOD
+     HasMaximal = record { od = record { def = λ x → odef A x ∧ ( (m : Ordinal) →  odef A m → ¬ (* x < * m)) }  ; odmax = & A ; <odmax = z07 } 
+     no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → odef A x ∧ ((m : Ordinal) →  odef A m →  odef A x ∧ (¬ (* x < * m) )) →  ⊥
+     no-maximum nomx x P = ¬x<0 (eq→ nomx {x} ⟪ proj1 P , (λ m ma p → proj2 ( proj2 P m ma ) p ) ⟫ )  
+     Gtx : { x : HOD} → A ∋ x → HOD
+     Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = z07 } 
+     z08  : ¬ Maximal A →  HasMaximal =h= od∅
+     z08 nmx  = record { eq→  = λ {x} lt → ⊥-elim ( nmx record {maximal = * x ; as = subst (λ k → odef A k) (sym &iso) (proj1 lt)
+         ; ¬maximal<x = λ {y} ay → subst (λ k → ¬ (* x < k)) *iso (proj2 lt (& y) ay) } ) ; eq← =  λ {y} lt → ⊥-elim ( ¬x<0 lt )}
+     x-is-maximal : ¬ Maximal A → {x : Ordinal} → (ax : odef A x) → & (Gtx (subst (λ k → odef A k ) (sym &iso) ax)) ≡ o∅ → (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m))
+     x-is-maximal nmx {x} ax nogt m am  = ⟪ subst (λ k → odef A k) &iso (subst (λ k → odef A k ) (sym &iso) ax) ,  ¬x<m  ⟫ where
+        ¬x<m :  ¬ (* x < * m)
+        ¬x<m x<m = ∅< {Gtx (subst (λ k → odef A k ) (sym &iso) ax)} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫  (≡o∅→=od∅ nogt) 
+
+     minsupP :  ( B : HOD) → (B⊆A : B ⊆' A) → IsTotalOrderSet B → MinSUP A B  
+     minsupP B B⊆A total = m02 where
+         xsup : (sup : Ordinal ) → Set n
+         xsup sup = {w : Ordinal } → odef B w → (w ≡ sup ) ∨ (w << sup )
+         ∀-imply-or :  {A : Ordinal  → Set n } {B : Set n }
+                        → ((x : Ordinal ) → A x ∨ B) →  ((x : Ordinal ) → A x) ∨ B
+         ∀-imply-or  {A} {B} ∀AB with ODC.p∨¬p O ((x : Ordinal ) → A x) -- LEM
+         ∀-imply-or  {A} {B} ∀AB | case1 t = case1 t
+         ∀-imply-or  {A} {B} ∀AB | case2 x  = case2 (lemma (λ not → x not )) where
+               lemma : ¬ ((x : Ordinal ) → A x) →  B
+               lemma not with ODC.p∨¬p O B
+               lemma not | case1 b = b
+               lemma not | case2 ¬b = ⊥-elim  (not (λ x → dont-orb (∀AB x) ¬b ))
+         m00 : (x : Ordinal ) → ( ( z : Ordinal) → z o< x →  ¬ (odef A z ∧ xsup z) ) ∨ MinSUP A B
+         m00 x = TransFinite0 ind x where
+            ind : (x : Ordinal) → ((z : Ordinal) → z o< x → ( ( w : Ordinal) → w o< z →  ¬ (odef A w ∧ xsup w ))  ∨ MinSUP A B)
+                  → ( ( w : Ordinal) → w o< x →  ¬ (odef A w ∧ xsup w) )  ∨ MinSUP A B
+            ind x prev  =  ∀-imply-or m01 where
+                m01 : (z : Ordinal) → (z o< x → ¬ (odef A z ∧ xsup z)) ∨ MinSUP A B
+                m01 z with trio< z x
+                ... | tri≈ ¬a b ¬c = case1 ( λ lt →  ⊥-elim ( ¬a lt )  )
+                ... | tri> ¬a ¬b c = case1 ( λ lt →  ⊥-elim ( ¬a lt )  )
+                ... | tri< a ¬b ¬c with prev z a
+                ... | case2 mins = case2 mins
+                ... | case1 not with ODC.p∨¬p O (odef A z ∧ xsup z)
+                ... | case1 mins = case2 record { sup = z ; asm = proj1 mins ; x<sup = proj2 mins ; minsup = m04 } where
+                  m04 : {sup1 : Ordinal} → odef A sup1 → ({w : Ordinal} → odef B w → (w ≡ sup1) ∨ (w << sup1)) → z o≤ sup1
+                  m04 {s} as lt with trio< z s
+                  ... | tri< a ¬b ¬c = o<→≤ a
+                  ... | tri≈ ¬a b ¬c = o≤-refl0 b
+                  ... | tri> ¬a ¬b s<z = ⊥-elim ( not s s<z ⟪ as , lt ⟫  )
+                ... | case2 notz = case1 (λ _ → notz )
+         m03 : ¬ ((z : Ordinal) → z o< & A → ¬ odef A z ∧ xsup z)
+         m03 not = ⊥-elim ( not s1 (z09 (SUP.as S)) ⟪ SUP.as S , m05 ⟫ ) where
+             S : SUP A B
+             S = supP B  B⊆A total
+             s1 = & (SUP.sup S)
+             m05 : {w : Ordinal } → odef B w → (w ≡ s1 ) ∨ (w << s1 )
+             m05 {w} bw with SUP.x<sup S {* w} (subst (λ k → odef B k) (sym &iso) bw )
+             ... | case1 eq = case1 ( subst₂ (λ j k → j ≡ k ) &iso refl (cong (&) eq) )
+             ... | case2 lt = case2 ( subst (λ k → _ < k ) (sym *iso) lt )
+         m02 : MinSUP A B 
+         m02 = dont-or (m00 (& A)) m03
+
+     -- Uncountable ascending chain by axiom of choice
+     cf : ¬ Maximal A → Ordinal → Ordinal
+     cf  nmx x with ODC.∋-p O A (* x)
+     ... | no _ = o∅
+     ... | yes ax with is-o∅ (& ( Gtx ax ))
+     ... | yes nogt = -- no larger element, so it is maximal
+         ⊥-elim (no-maximum (z08 nmx) x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal nmx (subst (λ k → odef A k ) &iso ax) nogt ⟫ )
+     ... | no not =  & (ODC.minimal O (Gtx ax) (λ eq → not (=od∅→≡o∅ eq)))
+     is-cf : (nmx : ¬ Maximal A ) → {x : Ordinal} → odef A x → odef A (cf nmx x) ∧ ( * x < * (cf nmx x) )
+     is-cf nmx {x} ax with ODC.∋-p O A (* x)
+     ... | no not = ⊥-elim ( not (subst (λ k → odef A k ) (sym &iso) ax ))
+     ... | yes ax with is-o∅ (& ( Gtx ax ))
+     ... | yes nogt = ⊥-elim (no-maximum (z08 nmx) x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal nmx (subst (λ k → odef A k ) &iso ax) nogt ⟫ )
+     ... | no not = ODC.x∋minimal O (Gtx ax) (λ eq → not (=od∅→≡o∅ eq))
+
+     ---
+     --- infintie ascention sequence of f
+     ---
+     cf-is-<-monotonic : (nmx : ¬ Maximal A ) → (x : Ordinal) →  odef A x → ( * x < * (cf nmx x) ) ∧  odef A (cf nmx x )
+     cf-is-<-monotonic nmx x ax = ⟪ proj2 (is-cf nmx ax ) , proj1 (is-cf nmx ax ) ⟫
+     cf-is-≤-monotonic : (nmx : ¬ Maximal A ) →  ≤-monotonic-f A ( cf nmx )
+     cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax  ))  , proj2 ( cf-is-<-monotonic nmx x ax  ) ⟫
+
+     --
+     -- Second TransFinite Pass for maximality
+     --
+
+     SZ1 : ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f) 
+        {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal)   → ZChain1 A f mf ay zc x
+     SZ1 f mf {y} ay zc x = ?
+
+     uchain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → HOD
+     uchain f mf {y} ay = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = 
+             λ {z} cz → subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (A∋fc y f mf cz ))) }
+
+     utotal : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) 
+        → IsTotalOrderSet (uchain f mf ay)
+     utotal f mf {y} ay {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where 
+               uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
+               uz01 = fcn-cmp y f mf ca cb
+
+     ysup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) 
+       →  MinSUP A (uchain f mf ay)
+     ysup f mf {y} ay = minsupP (uchain f mf ay) (λ lt → A∋fc y f mf lt)  (utotal f mf ay) 
+
+     SUP⊆ : { B C : HOD } → B ⊆' C → SUP A C → SUP A B
+     SUP⊆ {B} {C} B⊆C sup = record { sup = SUP.sup sup ; as = SUP.as sup ; x<sup = λ lt → SUP.x<sup sup (B⊆C lt)    }
+
+     record xSUP (B : HOD) (x : Ordinal) : Set n where
+        field
+           ax : odef A x
+           is-sup : IsSup A B ax
+
+     --
+     -- create all ZChains under o< x
+     --
+
+     ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) 
+         → ((z : Ordinal) → z o< x → ZChain A f mf ay z) → ZChain A f mf ay x
+     ind f mf {y} ay x prev = ?
+         
+     ---
+     --- the maximum chain  has fix point of any ≤-monotonic function
+     ---
+
+     SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain A f mf ay x
+     SZ f mf {y} ay x = TransFinite {λ z → ZChain A f mf ay z  } (λ x → ind f mf ay x   ) x
+
+     data ZChainP ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y) 
+            ( supf : Ordinal → Ordinal )  (z : Ordinal) : Set n where
+          zchain : (uz : Ordinal ) → odef (UnionCF A f mf ay supf uz) z → ZChainP f mf ay supf z
+     
+     auzc :  ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  
+            (supf : Ordinal → Ordinal )  → {x : Ordinal } → ZChainP f mf ay supf x → odef A x
+     auzc f mf {y} ay supf {x} (zchain uz ucf) = proj1 ucf
+
+     zp-uz : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  
+            (supf : Ordinal → Ordinal )  → {x : Ordinal } → ZChainP f mf ay supf x → Ordinal
+     zp-uz f mf ay supf (zchain uz _) = uz
+
+     uzc⊆zc :  ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  
+            (supf : Ordinal → Ordinal )  → {x : Ordinal } → (zp : ZChainP f mf ay supf x ) → UChain A f mf ay supf (zp-uz f mf ay supf zp) x 
+     uzc⊆zc f mf {y} ay supf {x} (zchain uz ⟪ ua , ch-init fc ⟫) = ch-init fc 
+     uzc⊆zc f mf {y} ay supf {x} (zchain uz ⟪ ua , ch-is-sup u u<x is-sup fc ⟫) with ChainP.supu=u is-sup
+     ... | eq = ch-is-sup u u<x is-sup fc 
+
+     UnionZF : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  
+            (supf : Ordinal → Ordinal )  → HOD
+     UnionZF f mf {y} ay supf = record { od = record { def = λ x → ZChainP f mf ay supf x } 
+         ; odmax = & A ; <odmax = λ lt →  ∈∧P→o< ⟪ auzc f mf ay supf lt , lift true ⟫ }
+     
+     uzctotal : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)  {y : Ordinal} (ay : odef A y)  
+         → ( supf : Ordinal → Ordinal )
+         → IsTotalOrderSet (UnionZF f mf ay supf )
+     uzctotal f mf ay supf {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (uz01 ca cb) where 
+          uz01 : {ua ub : Ordinal } → ZChainP f mf ay supf ua → ZChainP f mf ay supf ub 
+             → Tri (* ua < * ub) (* ua ≡ * ub) (* ub < * ua )
+          uz01 {ua} {ub} (zchain uza uca) (zchain uzb ucb) = chain-total A f mf ay supf (proj2 uca) (proj2 ucb)
+
+     usp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y)  
+         → ( supf : Ordinal → Ordinal )
+         → SUP A (UnionZF f mf ay supf )
+     usp0 f mf ay supf  = supP (UnionZF f mf ay supf ) (λ lt → auzc f mf ay supf lt ) (uzctotal f mf ay supf )
+
+     sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y)  
+         → (zc : ZChain A f mf ay x ) 
+         → SUP A (UnionCF A f mf ay (ZChain.supf zc) x)
+     sp0 f mf {x} ay zc = supP (UnionCF A f mf ay (ZChain.supf zc) x) (ZChain.chain⊆A zc) ztotal where
+        ztotal : IsTotalOrderSet (ZChain.chain zc) 
+        ztotal {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where 
+               uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
+               uz01 = chain-total A f mf ay (ZChain.supf zc) ( (proj2 ca)) ( (proj2 cb)) 
+
+     fixpoint :  ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f )  (zc : ZChain A f mf as0 (& A) )
+            → ZChain.supf zc (& (SUP.sup (sp0 f mf as0 zc))) o< ZChain.supf zc (& A)
+            → f (& (SUP.sup (sp0 f mf as0 zc ))) ≡ & (SUP.sup (sp0 f mf as0 zc  ))
+     fixpoint f mf zc ss<sa = ?
+
+
+     -- ZChain contradicts ¬ Maximal
+     --
+     -- ZChain forces fix point on any ≤-monotonic function (fixpoint)
+     -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain
+     --
+
+     z04 :  (nmx : ¬ Maximal A ) → (zc : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A)) → ⊥
+     z04 nmx zc = <-irr0  {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.as  sp1 ))))
+                                               (subst (λ k → odef A (& k)) (sym *iso) (SUP.as sp1) )
+           (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc ss<sa ))) -- x ≡ f x ̄
+           (proj1 (cf-is-<-monotonic nmx c (SUP.as sp1 ))) where          -- x < f x
+          supf = ZChain.supf zc
+          sp1 : SUP A (ZChain.chain zc)
+          sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc 
+          c = & (SUP.sup sp1)
+          z20 : c << cf nmx c 
+          z20 = proj1 (cf-is-<-monotonic nmx c (SUP.as sp1) )
+          asc : odef A (supf c)
+          asc = ZChain.asupf zc
+          spd : MinSUP A (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) 
+          spd = ysup (cf nmx)  (cf-is-≤-monotonic nmx) asc
+          d = MinSUP.sup spd
+          d<A : d o< & A
+          d<A =  ∈∧P→o< ⟪ MinSUP.asm spd , lift true ⟫
+          msup : MinSUP  A (UnionCF A (cf nmx)  (cf-is-≤-monotonic nmx) as0 supf d)
+          msup = ZChain.minsup zc (o<→≤ d<A) 
+          sd=ms : supf d ≡ MinSUP.sup ( ZChain.minsup zc (o<→≤ d<A) )
+          sd=ms = ZChain.supf-is-minsup zc (o<→≤ d<A)
+          -- z26 : {x : Ordinal } → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) x
+          --     → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) c) x ∨ odef (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) x 
+          -- z26 = ?
+          is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd)
+          is-sup = record { x<sup = z22 } where
+               z23 : {z : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) z → (z ≡ MinSUP.sup spd) ∨ (z << MinSUP.sup spd)
+               z23 lt = MinSUP.x<sup spd lt
+               z22 :  {y : Ordinal} → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) y →
+                   (y ≡ MinSUP.sup spd) ∨ (y << MinSUP.sup spd)
+               z22 {a} ⟪ aa , ch-init fc ⟫ = ?
+               z22 {a} ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ?
+                    -- u<x    : ZChain.supf zc u o< ZChain.supf zc d
+                    --     supf u o< spuf c → order
+          not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) d (cf nmx)
+          not-hasprev hp = ? where
+               y : Ordinal
+               y = HasPrev.y hp
+               z24 : y << d
+               z24 = subst (λ k → y <<  k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) ))
+               -- z26 : {x : Ordinal } → odef (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) x → (x ≡ d ) ∨ (x << d )  
+               -- z26 lt with MinSUP.x<sup spd (subst (λ k → odef _ k ) ? lt)
+               -- ... | case1 eq = ?
+               -- ... | case2 lt = ?
+               -- z25 : {x : Ordinal } → odef (uchain (cf nmx)  (cf-is-≤-monotonic nmx) asc ) x → (x ≡ y ) ∨ (x << y )  
+               -- z25 {x} (init au eq ) = ?   -- sup c = x, cf y ≡ d, sup c =< d
+               -- z25  (fsuc x lt) = ?        -- cf (sup c) 
+          sd=d : supf d ≡ d
+          sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫
+          sc<sd : supf c << supf d
+          sc<sd = ? 
+              -- z21 = proj1 ( cf-is-<-monotonic nmx ? ? )
+          -- sco<d : supf c o< supf d
+          -- sco<d with osuc-≡< ( ZChain.supf-<= zc (case2 sc<sd ) )
+          -- ... | case1 eq = ⊥-elim ( <-irr eq sc<sd )
+          -- ... | case2 lt = lt
+
+          ss<sa : supf c o< supf (& A)
+          ss<sa = ? -- with osuc-≡< ( ZChain.supf-mono zc (o<→≤ ( ∈∧P→o< ⟪ SUP.as sp0 , lift true ⟫) ))
+          -- ... | case2 lt = lt
+          -- ... | case1 eq = ? -- where
+     zorn00 : Maximal A 
+     zorn00 with is-o∅ ( & HasMaximal )  -- we have no Level (suc n) LEM 
+     ... | no not = record { maximal = ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ; as = zorn01 ; ¬maximal<x  = zorn02 } where
+         -- yes we have the maximal
+         zorn03 :  odef HasMaximal ( & ( ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ) )
+         zorn03 =  ODC.x∋minimal  O HasMaximal  (λ eq → not (=od∅→≡o∅ eq))   -- Axiom of choice
+         zorn01 :  A ∋ ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq))
+         zorn01  = proj1  zorn03  
+         zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x)
+         zorn02 {x} ax m<x = proj2 zorn03 (& x) ax (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x )
+     ... | yes ¬Maximal = ⊥-elim ( z04 nmx (SZ (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A) )) where
+         -- if we have no maximal, make ZChain, which contradict SUP condition
+         nmx : ¬ Maximal A 
+         nmx mx =  ∅< {HasMaximal} zc5 ( ≡o∅→=od∅  ¬Maximal ) where
+              zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) →  odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) 
+              zc5 = ⟪  Maximal.as mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫
+
+-- usage (see filter.agda )
+--
+-- _⊆'_ : ( A B : HOD ) → Set n
+-- _⊆'_ A B = (x : Ordinal ) → odef A x → odef B x
+
+-- MaximumSubset : {L P : HOD} 
+--        → o∅ o< & L →  o∅ o< & P → P ⊆ L
+--        → IsPartialOrderSet P _⊆'_
+--        → ( (B : HOD) → B ⊆ P → IsTotalOrderSet B _⊆'_ → SUP P B _⊆'_ )
+--        → Maximal P (_⊆'_)
+-- MaximumSubset {L} {P} 0<L 0<P P⊆L PO SP  = Zorn-lemma {P} {_⊆'_} 0<P PO SP