Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 696:0e28091e9271
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Jul 2022 21:26:49 +0900 |
parents | 7c0bb8ed7193 |
children | 96184d542e20 |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 11 16:46:18 2022 +0900 +++ b/src/zorn.agda Mon Jul 11 21:26:49 2022 +0900 @@ -531,7 +531,11 @@ → ((z : Ordinal) → z o< x → ZChain A f mf ay zc0 z) → ZChain A f mf ay zc0 x ind f mf {y} ay x zc0 prev with trio< o∅ x ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c ) - ... | tri≈ ¬a x=0 ¬c = ? + ... | tri≈ ¬a refl ¬c = record { initial = initial1 } where + initial1 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain1.supf (zc0 (& A))) (& A)) z → * y ≤ * z + initial1 {z} uz = ? where + zc01 : odef A z ∧ UChain A f mf ay (ZChain1.supf (zc0 (& A))) (& A) z + zc01 = uz ... | tri< 0<x ¬b ¬c with Oprev-p x ... | yes op = {!!} where -- @@ -546,10 +550,10 @@ px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc -- if previous chain satisfies maximality, we caan reuse it -- - no-extenion : ( {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain {!!}) a → b o< osuc x → (ab : odef A b) → - HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain {!!} ) ab → + no-extenion : ( {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → + HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain zc ) ab → * a < * b → odef (ZChain.chain zc ) b ) → ZChain A f mf ay zc0 x - no-extenion is-max = {!!} + no-extenion is-max = record { initial = ZChain.initial zc ; chain∋init = ZChain.chain∋init zc } zc4 : ZChain A f mf ay zc0 x zc4 with o≤? x o∅ @@ -570,8 +574,8 @@ HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain zc ) ab → * a < * b → odef (ZChain.chain zc ) b zc7 {a} {b} z<x za b<ox ab P a<b with osuc-≡< b<ox - ... | case2 lt = ZChain.is-max zc za {!!} ab P a<b - ... | case1 b=x = {!!} -- subst (λ k → odef chain0 k ) (trans (sym (HasPrev.x=fy pr )) (trans &iso (sym b=x)) ) ( ZChain.f-next zc (HasPrev.ay pr)) + ... | case2 lt = ZChain.is-max zc za (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) lt ) ab P a<b + ... | case1 b=x = subst (λ k → odef chain0 k ) (trans (sym (HasPrev.x=fy pr )) (trans &iso (sym b=x)) ) ( ZChain.f-next zc (HasPrev.ay pr)) ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax ) ... | case1 is-sup = -- x is a sup of zc record { chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!}