changeset 1245:11049e3168ad

dense done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 14 Mar 2023 11:58:15 +0900
parents a7dfcbbd07ff
children dd3debafba2d
files src/generic-filter.agda
diffstat 1 files changed, 76 insertions(+), 16 deletions(-) [+]
line wrap: on
line diff
--- a/src/generic-filter.agda	Tue Mar 14 09:50:23 2023 +0900
+++ b/src/generic-filter.agda	Tue Mar 14 11:58:15 2023 +0900
@@ -161,7 +161,7 @@
        d⊆P :  dense ⊆ L
        dense-f : {p : HOD} → L ∋ p  → HOD
        dense-d :  { p : HOD} → (lt : L ∋ p) → dense ∋ dense-f lt
-       dense-p :  { p : HOD} → (lt : L ∋ p) → (dense-f lt) ⊆ p
+       dense-p :  { p : HOD} → (lt : L ∋ p) → p ⊆ dense-f lt
 
 record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where
     field
@@ -170,10 +170,8 @@
     rgen : HOD
     rgen = Replace (Filter.filter genf) (λ x → P \ x )
 
--- \-⊆
-
 P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0
-      → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q ))  -- L is Boolean Algebra
+      → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q ))  -- L is a Boolean Algebra
       → (UNI : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q ))
       → (NEG : ({p : HOD} → L ∋ p → L ∋ ( P \ p)))
       → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C )
@@ -291,25 +289,87 @@
                   gf21 : {z : Ordinal } → odef (* x) z → odef P z
                   gf21 {z} lt = L⊆PP ( PDN.x∈PP pdx ) z lt
         fdense : (D : Dense {L} {P} L⊆PP ) → (ctl-M C ) ∋ Dense.dense D  → ¬ (Dense.dense D ∩ (PDHOD L p0 C)) ≡ od∅
-        fdense D MD eq0  = ? where
+        fdense D MD eq0  = ⊥-elim (  ∅< {Dense.dense D ∩ PDHOD L p0 C} fd01 (≡od∅→=od∅ eq0 )) where
            open Dense
+           fd09 : (i : ℕ ) → odef L (find-p L C i (& p0))
+           fd09 zero = Lp0
+           fd09 (suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) )
+           ... | yes _ = fd09 i
+           ... | no not = fd17 where
+              fd19 =  ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))  
+              fd18 : PGHOD i L C (find-p L C i (& p0)) ∋ fd19
+              fd18 = ODC.x∋minimal O (PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+              fd17 :  odef L ( & (ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq)))  )
+              fd17 = proj1 fd18 
+           an : ℕ
+           an = ctl← C (& (dense D)) MD  
+           pn : Ordinal
+           pn = find-p L C an (& p0)
+           pn+1 : Ordinal
+           pn+1 = find-p L C (suc an) (& p0)
+           d=an : dense D ≡ * (ctl→ C an) 
+           d=an = begin dense D ≡⟨ sym *iso ⟩
+                    * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
+                    * (ctl→ C an) ∎  where open ≡-Reasoning
+           fd07 : odef (dense D) pn+1
+           fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) )
+           ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 fd21 ) ) where
+              L∋pn : L ∋ * (find-p L C an (& p0))
+              L∋pn = subst (λ k → odef L k) (sym &iso) (fd09 an )
+              L∋df : L ∋ ( dense-f D L∋pn )
+              L∋df = (d⊆P D) (  dense-d D L∋pn )
+              pn∋df : (* (ctl→ C an)) ∋ ( dense-f D L∋pn )
+              pn∋df = subst (λ k → odef k (& ( dense-f D L∋pn ) )) d=an (  dense-d D L∋pn ) 
+              pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (dense-f D L∋pn))) y
+              pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (dense-p D L∋pn py)
+              fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (dense-f D L∋pn))
+              fd21 = ⟪ L∋df , ⟪ pn∋df , pn⊆df ⟫ ⟫
+              fd10 :  PGHOD an L C (find-p L C an (& p0)) =h= od∅
+              fd10 = ≡o∅→=od∅ y
+           ... | no not = fd27 where
+              fd29 =  ODC.minimal O ( PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+              fd28 : PGHOD an L C (find-p L C an (& p0)) ∋ fd29
+              fd28 = ODC.x∋minimal O (PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+              fd27 :  odef (dense D) (& fd29)
+              fd27 = subst (λ k → odef k (& fd29)) (sym d=an) (proj1 (proj2 fd28)) 
+           fd03 : odef (PDHOD L p0 C) pn+1
+           fd03 = record { gr = suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (suc an)} 
+           fd01 : (dense D ∩ PDHOD L p0 C) ∋ (* pn+1)
+           fd01 = ⟪ subst (λ k → odef (dense D)  k ) (sym &iso) fd07 , subst (λ k → odef  (PDHOD L p0 C) k) (sym &iso) fd03 ⟫  
+
 
 open GenericFilter
 open Filter
 
-record NonAtomic  (L a : HOD ) (L∋a : L ∋ a ) : Set (Level.suc (Level.suc n)) where
+record NotCompatible  (L p : HOD ) (L∋a : L ∋ p ) : Set (Level.suc (Level.suc n)) where
    field
-      b : HOD
-      0<b : ¬ o∅ ≡ & b
-      b<a : b ⊆ a
+      q r : HOD
+      Lq : L ∋ q
+      Lr : L ∋ r
+      p⊆q : p ⊆ q  
+      p⊆r : p ⊆ r  
+      ¬compat : (s : HOD) → ¬ ( (q ⊆ s) ∧ (r ⊆ s) )
 
-lemma232 : (P L p : HOD ) (C : CountableModel )
-    →  (LP : L ⊆ Power P ) →  (Lp0 : L ∋ p  ) ( NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p))
-    →  ( {q : HOD} → (Lq : L ∋ q ) → NonAtomic L q Lq )
-    →  ¬ ( (ctl-M C) ∋  rgen ( P-GenericFilter P L p LP Lp0 ? ? NEG  C ))
-lemma232 P L p C LP Lp0 NEG NA MG = {!!} where
-    D : HOD  -- P - G
-    D = ?
+lemma232 : (P L p0 : HOD ) → (LP : L ⊆ Power P) → (Lp0 : L ∋ p0 )
+      → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q ))  -- L is a Boolean Algebra
+      → (UNI : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q ))
+      → (NEG : ({p : HOD} → L ∋ p → L ∋ ( P \ p)))
+      → (C : CountableModel ) 
+      → ( MP : ctl-M C ∋ P )
+      → ( {p : HOD} → (Lp : L ∋ p ) → NotCompatible L p Lp )
+      →  ¬ ( ctl-M C ∋  rgen ( P-GenericFilter P L p0 LP Lp0 CAP UNI NEG  C ))
+lemma232 P L p0 LP Lp0 CAP UNI NEG C MP NC M∋gf = ¬gf∩D=0 record { eq→ = λ {x} gf∩D → ⊥-elim( proj2 (proj2 gf∩D) (proj1 gf∩D)) 
+        ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where
+    gf =  rgen ( P-GenericFilter P L p0 LP Lp0 CAP UNI NEG  C )
+    M = ctl-M C
+    D : HOD  
+    D = L \ gf
+    M∋D : M ∋ D
+    M∋D = ?
+    ¬gf∩D=0 : ¬ ( (gf ∩ D) =h= od∅ )
+    ¬gf∩D=0 = ?
+    gf∩D∋x :  (gf ∩ D) ∋ ?
+    gf∩D∋x = ?
 
 --
 -- P-Generic Filter defines a countable model D ⊂ C from P