Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1080:11e869f92504
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 16 Dec 2022 20:03:01 +0900 |
parents | c2546206c891 |
children | 7089a047e49f |
files | src/zorn.agda |
diffstat | 1 files changed, 26 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Dec 16 17:00:44 2022 +0900 +++ b/src/zorn.agda Fri Dec 16 20:03:01 2022 +0900 @@ -1589,7 +1589,32 @@ zc44 = subst (λ k → FClosure A f k w ) (sym zc45) fc zo≤sz : {z : Ordinal} → z o≤ x → z o≤ supf1 z - zo≤sz = ? + zo≤sz {z} z≤x with osuc-≡< z≤x + ... | case2 z<x = subst (λ k → z o≤ k) (sym (trans (sf1=sf z<x) (sym (zeq _ _ (o<→≤ <-osuc) o≤-refl)))) ( ZChain.zo≤sz (pzc z<x) o≤-refl ) + ... | case1 refl = subst (λ k → x o≤ k) (sf1=spu refl) z47 where + z47 : x o≤ spu + z47 with x<y∨y≤x spu x + ... | case2 lt = lt + ... | case1 spu<x = ⊥-elim ( <<-irr (MinSUP.x≤sup usup z48) (proj1 ( mf< spu (MinSUP.as usup)))) where + z49 : supfz spu<x ≡ spu + z49 with trio< (supfz spu<x) spu + ... | tri< a ¬b ¬c = ⊥-elim ( o≤> ( IsMinSUP.minsup (is-minsup (o<→≤ spu<x)) (MinSUP.as usup) z51 ) a ) where + z51 : {w : Ordinal } → odef (UnionCF A f ay supf1 spu) w → w ≤ spu + z51 {w} ⟪ aw , ch-init fc ⟫ = MinSUP.x≤sup usup ⟪ aw , ic-init fc ⟫ + z51 {w} ⟪ aw , ch-is-sup u u<b su=u fc ⟫ = MinSUP.x≤sup usup ⟪ aw , ic-isup u (ordtrans u<b spu<x) ? ? ⟫ + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c = ⊥-elim ( o≤> ( MinSUP.minsup usup (ZChain.asupf (pzc (ob<x lim spu<x))) z52 ) c ) where + z52 : {w : Ordinal } → odef pchainU w → w ≤ supfz spu<x + z52 {w} uw = subst (λ k → w ≤ k ) (sf1=sf spu<x) ( IsMinSUP.x≤sup (is-minsup (o<→≤ spu<x)) z53 ) where + z53 : odef (UnionCF A f ay supf1 spu) w + z53 with pchainU⊆chain uw + ... | ⟪ aw , ch-init fc ⟫ = ⟪ aw , ch-init fc ⟫ + ... | ⟪ aw , ch-is-sup u u<b su=u fc ⟫ = ⟪ aw , ch-is-sup u ? ? ? ⟫ + z50 : supfz spu<x o≤ x + z50 = o<→≤ ( subst (λ k → k o< x) z49 spu<x ) + z48 : odef pchainU (f spu) + z48 = ⟪ proj2 (mf _ (MinSUP.as usup) ) , ic-isup _ (subst (λ k → k o< x) refl spu<x) z50 + (fsuc _ (init (ZChain.asupf (pzc (ob<x lim spu<x))) z49)) ⟫ order : {a b w : Ordinal } → b o≤ x → supf1 a o< supf1 b → FClosure A f (supf1 a) w → w ≤ supf1 b order {a} {b} {w} b≤x sa<sb fc with osuc-≡< b≤x