Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 226:176ff97547b4
set theortic function definition using sup
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 11 Aug 2019 13:05:17 +0900 |
parents | 5f48299929ac |
children | a4cdfc84f65f |
files | OD.agda cardinal.agda |
diffstat | 2 files changed, 40 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Aug 11 08:10:13 2019 +0900 +++ b/OD.agda Sun Aug 11 13:05:17 2019 +0900 @@ -477,3 +477,9 @@ choice : (X : OD ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not +_,_ = ZF._,_ OD→ZF +Union = ZF.Union OD→ZF +Power = ZF.Power OD→ZF +Select = ZF.Select OD→ZF +Replace = ZF.Replace OD→ZF +isZF = ZF.isZF OD→ZF
--- a/cardinal.agda Sun Aug 11 08:10:13 2019 +0900 +++ b/cardinal.agda Sun Aug 11 13:05:17 2019 +0900 @@ -22,11 +22,31 @@ open Bool -func : (f : Ordinal → Ordinal ) → ( dom cod : OD ) → OD -func f dom cod = record { def = λ z → {x y : Ordinal} → (z ≡ omax x y ) ∧ def dom x ∧ def cod (f x ) } +func : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD +func f dom = Replace dom ( λ x → x , (ord→od (f (od→ord x) ))) + +record _⊗_ (A B : Ordinal) : Set n where + field + π1 : Ordinal + π2 : Ordinal + A∋π1 : def (ord→od A) π1 + B∋π2 : def (ord→od B) π2 + +Func : ( A B : OD ) → OD +Func A B = record { def = λ x → (od→ord A) ⊗ (od→ord B) } --- Func : ( dom cod : OD ) → OD --- Func dom cod = record { def = λ x → x o< sup-o ( λ y → (f : Ordinal → Ordinal ) → y ≡ od→ord (func f dom cod) ) } +π1 : { A B x : OD } → Func A B ∋ x → OD +π1 {A} {B} {x} p = ord→od (_⊗_.π1 p) + +π2 : { A B x : OD } → Func A B ∋ x → OD +π2 {A} {B} {x} p = ord→od (_⊗_.π2 p) + +Func→func : { dom cod : OD } → (f : OD ) → Func dom cod ∋ f → (Ordinal → Ordinal ) +Func→func {dom} {cod} f lt x = sup-o ( λ y → lemma y ) where + lemma : Ordinal → Ordinal + lemma y with p∨¬p ( _⊗_.π1 lt ≡ x ) + lemma y | case1 refl = _⊗_.π2 lt + lemma y | case2 not = o∅ ------------ -- @@ -37,10 +57,11 @@ -- record Onto (X Y : OD ) : Set n where field - xmap : (x : Ordinal ) → def X x → Ordinal - ymap : (y : Ordinal ) → def Y y → Ordinal - ymap-on-X : {y : Ordinal } → (lty : def Y y ) → def X (ymap y lty) - onto-iso : {y : Ordinal } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y + xmap : Ordinal + ymap : Ordinal + xfunc : def (Func X Y) xmap + yfunc : def (Func Y X) ymap + onto-iso : {y : Ordinal } → (lty : def Y y ) → Func→func (ord→od xmap) xfunc ( Func→func (ord→od ymap) yfunc y ) ≡ y record Cardinal (X : OD ) : Set n where field @@ -51,19 +72,15 @@ cardinal : (X : OD ) → Cardinal X cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) - ; conto = x∋minimul onto-set ∃-onto-set + ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto (Ord x) X) ) cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } - onto-set : OD - onto-set = record { def = λ x → Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } - ∃-onto-set : ¬ ( onto-set == od∅ ) - ∃-onto-set record { eq→ = eq→ ; eq← = eq← } = ¬x<0 {_} ( eq→ lemma ) where - lemma : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X - lemma = {!!} + onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X + onto = {!!} cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where @@ -72,6 +89,8 @@ lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) + +----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.