Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 639:18e45e419a68
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 24 Jun 2022 13:29:11 +0900 |
parents | 6cd4a483122c |
children | 4f48fe1b884a |
files | src/zorn.agda |
diffstat | 1 files changed, 8 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 21 08:46:26 2022 +0900 +++ b/src/zorn.agda Fri Jun 24 13:29:11 2022 +0900 @@ -691,7 +691,7 @@ SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) → (z : Ordinal) → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) z - SZ1 f mf {y} ay z = TransFinite {λ w → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) w} indp z where + SZ1 f mf {y} ay z = TransFinite {λ w → {!!} w} {!!} z where indp : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 (λ y₂ → ZChain.chain (TransFinite (ind f mf ay) y₂)) y₁) → ZChain1 (λ y₁ → ZChain.chain (TransFinite (ind f mf ay) y₁)) x @@ -706,6 +706,13 @@ ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b y<x = {!!} + T⊆ : { ψ : Ordinal → HOD } + → ( (x : Ordinal) → ( (y : Ordinal ) → y o< x → {z : Ordinal} → z o≤ y → ψ z ⊆' ψ y ) → {z : Ordinal} → z o≤ x → ψ z ⊆' ψ x ) + → ∀ (x : Ordinal) → {z : Ordinal} → z o≤ x → ψ z ⊆' ψ x + T⊆ {ψ} prev x {z} z≤x = TransFinite0 (λ x prev → indt x prev ) x {z} z≤x where + indt : (x : Ordinal) → ( (y : Ordinal) → y o< x → {z : Ordinal} → z o≤ y → ψ z ⊆' ψ y ) → {z : Ordinal} → z o≤ x → ψ z ⊆' ψ x + indt x prev {z} z≤x {i} zi = prev ? ? {z} z≤x zi + zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x = zorn02 } where