Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1002:19ae0591c6dd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Nov 2022 17:58:48 +0900 |
parents | e18d9764365a |
children | b9dfe9bc8412 |
files | src/zorn.agda |
diffstat | 1 files changed, 25 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 18 17:15:47 2022 +0900 +++ b/src/zorn.agda Fri Nov 18 17:58:48 2022 +0900 @@ -1100,7 +1100,31 @@ ( ZChain.fcy<sup zc o≤-refl fc ) ; order = order ; supu=u = trans (sf1=sf0 o≤-refl) spx=px } - ... | case2 spx<px = ⟪ z53 , ch-is-sup ? ? ? ? ⟫ + ... | case2 spx<px = ⟪ z53 , ch-is-sup spx ? ? ? ⟫ where + spx = supf0 px + z54 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (supf0 px)) z → (z ≡ supf0 px) ∨ (z << supf0 px) + z54 {z} ⟪ az , ch-init fc ⟫ = ZChain.fcy<sup zc o≤-refl fc + z54 {z} ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = subst (λ k → (z ≡ k) ∨ (z << k )) + (sym (ZChain.supf-is-minsup zc o≤-refl)) + (MinSUP.x≤sup (ZChain.minsup zc o≤-refl) (ZChain.cfcs zc mf< u<px o≤-refl fc )) where + u<px : u o< px + u<px = ZChain.supf-inject zc ( subst (λ k → k o< supf0 px) (sym (ChainP.supu=u is-sup)) u<b ) + -- u<b : u o< supf0 px + -- is-sup : ChainP A f mf ay (ZChain.supf zc) u + -- fc : FClosure A f (ZChain.supf zc u) z + z52 : supf1 (supf0 px) ≡ supf0 px + z52 = trans (sf1=sf0 (zc-b<x _ sfpx<x)) ( ZChain.sup=u zc (ZChain.asupf zc) (zc-b<x _ sfpx<x) + ⟪ record { x≤sup = z54 } , ZChain.IsMinSUP→NotHasPrev zc (ZChain.asupf zc) z54 (( λ ax → proj1 (mf< _ ax))) ⟫ ) + order : {s z1 : Ordinal} → supf1 s o< supf1 spx → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 spx) ∨ (z1 << supf1 spx) + order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) + (trans (sym (ZChain.supf-is-minsup zc ? )) (sym ? ) ) + (MinSUP.x≤sup (ZChain.minsup zc ?) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) + ? (fcup fcs ? ) )) + cp1 : ChainP A f mf ay supf1 spx + cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ (z << k )) (sym (sf1=sf0 ? )) + ( ZChain.fcy<sup zc ? fc ) + ; order = order + ; supu=u = ? } ... | tri≈ ¬a spx=x ¬c = ⊥-elim (<-irr (case1 (cong (*) m10)) (proj1 (mf< (supf0 px) (ZChain.asupf zc)))) where -- supf px ≡ x then the chain is stopped, which cannot happen when <-monotonic case m12 : supf0 px ≡ sp1