Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 366:1a8ca713bc32
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Jul 2020 18:11:13 +0900 |
parents | 7f919d6b045b |
children | f74681db63c7 |
files | filter.agda |
diffstat | 1 files changed, 24 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Sat Jul 18 12:29:38 2020 +0900 +++ b/filter.agda Sat Jul 18 18:11:13 2020 +0900 @@ -159,26 +159,34 @@ ho< : {x : HOD} → hod-ord< {x} -- : ({x : HOD} → od→ord x o< next (odmax x)) -data Hω2 : ( x : Ordinal ) → Set n where - hφ : Hω2 o∅ - h0 : {x : Ordinal } → Hω2 x → - Hω2 (od→ord < nat→ω 0 , ord→od x >) - h1 : {x : Ordinal } → Hω2 x → - Hω2 (od→ord < nat→ω 1 , ord→od x >) - h2 : {x : Ordinal } → Hω2 x → - Hω2 (od→ord < nat→ω 2 , ord→od x >) +data Hω2 : (i : Nat) ( x : Ordinal ) → Set n where + hφ : Hω2 0 o∅ + h0 : {i : Nat} {x : Ordinal } → Hω2 i x → + Hω2 (Suc i) (od→ord (Union ((< nat→ω i , nat→ω 0 >) , ord→od x ))) + h1 : {i : Nat} {x : Ordinal } → Hω2 i x → + Hω2 (Suc i) (od→ord (Union ((< nat→ω i , nat→ω 1 >) , ord→od x ))) + he : {i : Nat} {x : Ordinal } → Hω2 i x → + Hω2 (Suc i) x + +record Hω2r (x : Ordinal) : Set n where + field + count : Nat + hω2 : Hω2 count x + +open Hω2r HODω2 : HOD -HODω2 = record { od = record { def = λ x → Hω2 x } ; odmax = next o∅ ; <odmax = odmax0 } where +HODω2 = record { od = record { def = λ x → Hω2r x } ; odmax = next o∅ ; <odmax = odmax0 } where ω<next : {y : Ordinal} → infinite-d y → y o< next o∅ ω<next = ω<next-o∅ ho< - lemma0 : {n y : Ordinal} → Hω2 y → odef infinite n → od→ord < ord→od n , ord→od y > o< next y - lemma0 {n} {y} hw2 inf = nexto=n {!!} - odmax0 : {y : Ordinal} → Hω2 y → y o< next o∅ - odmax0 {o∅} hφ = x<nx - odmax0 (h0 {y} lt) = next< (odmax0 lt) (subst (λ k → k o< next y ) (cong (λ k → od→ord < k , ord→od y >) oiso ) (lemma0 lt (ω∋nat→ω {0} ))) - odmax0 (h1 {y} lt) = next< (odmax0 lt) (subst (λ k → k o< next y ) (cong (λ k → od→ord < k , ord→od y >) oiso ) (lemma0 lt (ω∋nat→ω {1} ))) - odmax0 (h2 {y} lt) = next< (odmax0 lt) (subst (λ k → k o< next y ) (cong (λ k → od→ord < k , ord→od y >) oiso ) (lemma0 lt (ω∋nat→ω {2} ))) + lemma : {i j : Nat} {x : Ordinal } → od→ord (Union (< nat→ω i , nat→ω j > , ord→od x)) o< next x + lemma = {!!} + odmax0 : {y : Ordinal} → Hω2r y → y o< next o∅ + odmax0 {y} r with hω2 r + ... | hφ = x<nx + ... | h0 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma {i} {0} {x}) + ... | h1 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma {i} {1} {x}) + ... | he {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) x<nx HODω2-Filter : Filter HODω2 HODω2-Filter = record {