Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1122:1c7474446754
add OS ∋ od∅
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 04 Jan 2023 09:39:25 +0900 |
parents | 98af35c9711f |
children | 256a3ba634f6 |
files | src/Topology.agda |
diffstat | 1 files changed, 53 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Tue Jan 03 14:17:53 2023 +0900 +++ b/src/Topology.agda Wed Jan 04 09:39:25 2023 +0900 @@ -39,6 +39,7 @@ OS⊆PL : OS ⊆ Power L o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) o∪ : { P : HOD } → P ⊂ OS → OS ∋ Union P + OS∋od∅ : OS ∋ od∅ -- closed Set CS : HOD CS = record { od = record { def = λ x → (* x ⊆ L) ∧ odef OS (& ( L \ (* x ))) } ; odmax = osuc (& L) ; <odmax = tp02 } where @@ -46,9 +47,20 @@ tp02 {y} nop = subst (λ k → k o≤ & L ) &iso ( ⊆→o≤ (λ {x} yx → proj1 nop yx )) os⊆L : {x : HOD} → OS ∋ x → x ⊆ L os⊆L {x} Ox {y} xy = ( OS⊆PL Ox ) _ (subst (λ k → odef k y) (sym *iso) xy ) + cs⊆L : {x : HOD} → CS ∋ x → x ⊆ L + cs⊆L {x} Cx {y} xy = proj1 Cx (subst (λ k → odef k y ) (sym *iso) xy ) + CS∋L : CS ∋ L + CS∋L = ⟪ ? , ? ⟫ +--- we may add +-- OS∋L : OS ∋ L +-- OS∋od∅ : OS ∋ od∅ open Topology +Cl : {L : HOD} → (top : Topology L) → (A : HOD) → A ⊆ L → HOD +Cl {L} top A A⊆L = record { od = record { def = λ x → (c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x } + ; odmax = & L ; <odmax = ? } + -- Subbase P -- A set of countable intersection of P will be a base (x ix an element of the base) @@ -88,7 +100,7 @@ record IsSubBase (L P : HOD) : Set (suc n) where field - P⊆PL : P ⊆ Power L + P⊆PL : P ⊆ Power L -- we may need these if OS ∋ L is necessary -- p : {x : HOD} → L ∋ x → HOD -- Pp : {x : HOD} → {lx : L ∋ x } → P ∋ p lx @@ -96,7 +108,9 @@ GeneratedTopogy : (L P : HOD) → IsSubBase L P → Topology L GeneratedTopogy L P isb = record { OS = SO L P ; OS⊆PL = tp00 - ; o∪ = tp02 ; o∩ = tp01 } where + ; o∪ = tp02 ; o∩ = tp01 ; OS∋od∅ = tp03 } where + tp03 : {x : Ordinal } → odef (* (& od∅)) x → Base L P (& od∅) x + tp03 {x} 0x = ⊥-elim ( empty (* x) ( subst₂ (λ j k → odef j k ) *iso (sym &iso) 0x )) tp00 : SO L P ⊆ Power L tp00 {u} ou x ux with ou ux ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = u⊂L (b⊆u bx) @@ -153,11 +167,15 @@ record FIP {L : HOD} (top : Topology L) : Set n where field - finite : {X : Ordinal } → * X ⊆ CS top + limit : {X : Ordinal } → * X ⊆ CS top → * X ∋ L → ( { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) → Ordinal - limit : {X : Ordinal } → (CX : * X ⊆ CS top ) + is-limit : {X : Ordinal } → (CX : * X ⊆ CS top ) → (XL : * X ∋ L ) → ( fip : { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) - → {x : Ordinal } → odef (* X) x → odef (* x) (finite CX fip) + → {x : Ordinal } → odef (* X) x → odef (* x) (limit CX XL fip) + L∋limit : {X : Ordinal } → (CX : * X ⊆ CS top ) → (XL : * X ∋ L) + → ( fip : { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) + → odef L (limit CX XL fip) + L∋limit {X} CX XL fip = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX XL)) (is-limit CX XL fip XL) -- Compact @@ -196,7 +214,7 @@ fip02 : {C x : Ordinal} → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x fip02 = ? fip01 : Ordinal - fip01 = FIP.finite fip (CCX ox) fip02 + fip01 = FIP.limit fip (CCX ox) ? fip02 ¬CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → * (cex ox oc) ⊆ * (CX ox) → Subbase (* (cex ox oc)) o∅ ¬CXfip {X} ox oc = ? where fip04 : odef (Cex ox) (cex ox oc) @@ -262,7 +280,8 @@ -- Ultra Filter has limit point -record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) : Set (suc (suc n)) where +record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) + (FL : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) : Set (suc (suc n)) where field limit : Ordinal P∋limit : odef P limit @@ -271,20 +290,38 @@ -- FIP is UFL FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP - → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf -FIP→UFLP {P} TP fip {L} LP F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } + → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FL : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F FL uf +FIP→UFLP {P} TP fip {L} LP F FL uf = record { limit = FIP.limit fip fip00 CFP fip01 ; P∋limit = FIP.L∋limit fip fip00 CFP fip01 ; is-limit = fip02 } + where + CF : Ordinal + CF = & ( Replace' (filter F) (λ z fz → Cl TP z (fip03 fz)) ) where + fip03 : {z : HOD} → filter F ∋ z → z ⊆ P + fip03 {z} fz {x} zx with LP ( f⊆L F fz ) + ... | pw = pw x (subst (λ k → odef k x) (sym *iso) zx ) + CFP : * CF ∋ P -- filter F ∋ P + CFP = ? + fip00 : * CF ⊆ CS TP -- replaced + fip00 = ? + fip01 : {C x : Ordinal} → * C ⊆ * CF → Subbase (* C) x → o∅ o< x + fip01 {C} {x} CCF (gi Cx) = ? -- filter is proper .i.e it contains no od∅ + fip01 {C} {.(& (* _ ∩ * _))} CCF (g∩ sb sb₁) = ? + fip02 : {o : Ordinal} → odef (OS TP) o → odef (* o) (FIP.limit fip fip00 ? fip01) → * o ⊆ filter F + fip02 {p} oo ol = ? where + fip04 : odef ? (FIP.limit fip fip00 ? fip01) + fip04 = FIP.is-limit fip fip00 CFP fip01 ? + UFLP→FIP : {P : HOD} (TP : Topology P) → - ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf ) → FIP TP -UFLP→FIP {P} TP uflp = record { fip≠φ = ? } + ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FL : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F ? uf ) → FIP TP +UFLP→FIP {P} TP uflp = record { limit = ? ; is-limit = ? } -- Product of UFL has limit point (Tychonoff) Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (TP Top⊗ TQ) Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (TP Top⊗ TQ) (UFLP→FIP (TP Top⊗ TQ) uflp ) where - uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ) - (uf : ultra-filter {L} {_} {LPQ} F) → UFLP (TP Top⊗ TQ) LPQ F uf - uflp {L} LPQ F uf = record { limit = & < * ( UFLP.limit uflpp) , ? > ; P∋limit = ? ; is-limit = ? } where + uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ) (LF : filter F ∋ ZFP P Q) + (uf : ultra-filter {L} {_} {LPQ} F) → UFLP (TP Top⊗ TQ) LPQ F ? uf + uflp {L} LPQ F LF uf = record { limit = & < * ( UFLP.limit uflpp) , ? > ; P∋limit = ? ; is-limit = ? } where LP : (L : HOD ) (LPQ : L ⊆ Power (ZFP P Q)) → HOD LP L LPQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LPP : (L : HOD) (LPQ : L ⊆ Power (ZFP P Q)) → LP L LPQ ⊆ Power P @@ -301,8 +338,8 @@ tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = ? } uFP : ultra-filter FP uFP = record { proper = ? ; ultra = ? } - uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP uFP - uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP uFP + uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP ? uFP + uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP ? uFP LQ : HOD LQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ2 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LQQ : LQ ⊆ Power Q