Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1121:98af35c9711f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 Jan 2023 14:17:53 +0900 |
parents | e086a266c6b7 |
children | 1c7474446754 |
files | src/Topology.agda |
diffstat | 1 files changed, 29 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Tue Jan 03 09:28:23 2023 +0900 +++ b/src/Topology.agda Tue Jan 03 14:17:53 2023 +0900 @@ -175,20 +175,36 @@ FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top → Compact top FIP→Compact {L} top fip = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where - remain : {X : Ordinal } → (* X) ⊆ OS top → ¬ ( (* X) covers L ) → Ordinal - remain = ? - remain-is-intersection : {X : Ordinal } → (ox : (* X) ⊆ OS top) → (r : ¬ ( (* X) covers L ) ) - → {x : Ordinal } → odef (* X) x → odef (L \ * x ) (remain ox r) - -- HOD of a counter example of fip - tp00 : {X : Ordinal} → * X ⊆ OS top → HOD - tp00 {X} ox = record { od = record { def = λ x → { C : Ordinal } → * C ⊆ * X → Subbase (L \ * C) x } - ; odmax = & L ; <odmax = ? } + -- set of coset of X + CX : {X : Ordinal} → * X ⊆ OS top → Ordinal + CX {X} ox = & ( Replace' (* X) (λ z xz → L \ z )) + CCX : {X : Ordinal} → (os : * X ⊆ OS top) → * (CX os) ⊆ CS top + CCX {X} ox = ? + -- CX has finite intersection + CXfip : {X : Ordinal } → * X ⊆ OS top → Set n + CXfip {X} ox = { x C : Ordinal } → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x + Cex : {X : Ordinal } → * X ⊆ OS top → HOD + Cex {X} ox = record { od = record { def = λ C → { x : Ordinal } → * C ⊆ * (CX ox) → Subbase (* C) o∅ } + ; odmax = osuc ( & (Power L)) ; <odmax = ? } + -- a counter example of fip , some CX has no finite intersection + cex : {X : Ordinal } → * X ⊆ OS top → * X covers L → Ordinal + cex {X} ox oc = & ( ODC.minimal O (Cex ox) fip00) where + fip00 : ¬ ( Cex ox =h= od∅ ) + fip00 cex=0 = fip03 ? ? where + fip03 : {x z : Ordinal } → odef (* x) z → (¬ odef (* x) z) → ⊥ + fip03 {x} {z} xz nxz = nxz xz + fip02 : {C x : Ordinal} → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x + fip02 = ? + fip01 : Ordinal + fip01 = FIP.finite fip (CCX ox) fip02 + ¬CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → * (cex ox oc) ⊆ * (CX ox) → Subbase (* (cex ox oc)) o∅ + ¬CXfip {X} ox oc = ? where + fip04 : odef (Cex ox) (cex ox oc) + fip04 = ? + -- this defines finite cover finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal - finCover {X} ox oc = ? where - -- X is the counter example of fip - tp01 : {x : Ordinal } → odef (L \ * X) ( FIP.finite fip ? ? ) → odef (* x) ( FIP.finite fip ? ? ) - tp01 {x} P = FIP.limit fip ? ? ? - -- yes, it is finite + finCover {X} ox oc = & ( Replace' (* (cex ox oc)) (λ z xz → L \ z )) + -- create Finite-∪ from cex isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) isFinite = ? -- is also a cover