Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 111:1daa1d24348c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Jun 2019 13:18:18 +0900 |
parents | dab56d357fa3 |
children | c42352a7ee07 |
files | ordinal-definable.agda ordinal.agda zf.agda |
diffstat | 3 files changed, 38 insertions(+), 113 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Tue Jun 18 23:40:17 2019 +0900 +++ b/ordinal-definable.agda Thu Jun 20 13:18:18 2019 +0900 @@ -66,7 +66,7 @@ -- supermum as Replacement Axiom sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ - -- a property of supermum required in Power Set Axiom + -- contra-position of mimimulity of supermum required in Power Set Axiom sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) @@ -114,11 +114,7 @@ transitive : {n : Level } { z y x : OD {suc n} } → z ∋ y → y ∋ x → z ∋ x transitive {n} {z} {y} {x} z∋y x∋y with ordtrans ( c<→o< {suc n} {x} {y} x∋y ) ( c<→o< {suc n} {y} {z} z∋y ) -... | t = lemma0 (lemma t) where - lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord x) - lemma xo<z = {!!} -- o<→c< xo<z - lemma0 : def ( ord→od ( od→ord z )) ( od→ord x) → def z (od→ord x) - lemma0 dz = def-subst {suc n} { ord→od ( od→ord z )} { od→ord x} dz (oiso) refl +... | t = otrans z z∋y (c<→o< {suc n} {x} {y} x∋y ) record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where field @@ -162,52 +158,11 @@ c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x c≤-refl x = case1 refl -o<→o> : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ -o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with - yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} {!!} oiso refl ) -... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) -... | () -o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with - yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} {!!} oiso refl ) -... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) -... | () - -==→o≡ : {n : Level} → { x y : Ordinal {suc n} } → ord→od x == ord→od y → x ≡ y -==→o≡ {n} {x} {y} eq with trio< {n} x y -==→o≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq (o<-subst a (sym ord-iso) (sym ord-iso ))) -==→o≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b -==→o≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) (o<-subst c (sym ord-iso) (sym ord-iso ))) - -≡-def : {n : Level} → { x : Ordinal {suc n} } → x ≡ od→ord (Ord x) -≡-def {n} {x} = ==→o≡ {n} (subst (λ k → ord→od x == k ) (sym oiso) lemma ) where - lemma : ord→od x == record { def = λ z → z o< x } - eq→ lemma {w} z = subst₂ (λ k j → k o< j ) diso refl (subst (λ k → (od→ord ( ord→od w)) o< k ) diso t ) where - t : (od→ord ( ord→od w)) o< (od→ord (ord→od x)) - t = c<→o< {suc n} {ord→od w} {ord→od x} (def-subst {suc n} {_} {_} {ord→od x} {_} z refl (sym diso)) - eq← lemma {w} z = def-subst {suc n} {_} {_} {ord→od x} {w} {!!} refl refl - -od≡-def : {n : Level} → { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } -od≡-def {n} {x} = subst (λ k → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} )) - -==→o≡1 : {n : Level} → { x y : OD {suc n} } → x == y → od→ord x ≡ od→ord y -==→o≡1 eq = ==→o≡ (subst₂ (λ k j → k == j ) (sym oiso) (sym oiso) eq ) - -==-def-l : {n : Level } {x y : Ordinal {suc n} } { z : OD {suc n} }→ (ord→od x == ord→od y) → def z x → def z y -==-def-l {n} {x} {y} {z} eq z>x = subst ( λ k → def z k ) (==→o≡ eq) z>x - -==-def-r : {n : Level } {x y : OD {suc n} } { z : Ordinal {suc n} }→ (x == y) → def x z → def y z -==-def-r {n} {x} {y} {z} eq z>x = subst (λ k → def k z ) (subst₂ (λ j k → j ≡ k ) oiso oiso (cong (λ k → ord→od k) (==→o≡1 eq))) z>x - ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a ∋→o< {n} {a} {x} lt = t where t : (od→ord x) o< (od→ord a) t = c<→o< {suc n} {x} {a} lt -o<∋→ : {n : Level} → { a x : OD {suc n} } → od→ord x o< od→ord a → a ∋ x -o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso refl t where - t : def (ord→od (od→ord a)) (od→ord x) - t = {!!} -- o<→c< {suc n} {od→ord x} {od→ord a} lt - o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} o∅≡od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (od∅ {suc n} )) o∅≡od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where @@ -222,31 +177,15 @@ ord-od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where lemma : o∅ {suc n } o< (od→ord (Ord (o∅ {suc n}))) → ⊥ lemma lt with o<→c< lt - lemma lt | t = o<¬≡ _ _ refl t + lemma lt | t = o<¬≡ refl t ord-od∅ {n} | tri≈ ¬a b ¬c = b ord-od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) - -o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) -o<→¬== {n} {x} {y} lt eq = o<→o> eq lt - o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y -o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (od→ord x) (od→ord y) (orefl oeq ) (c<→o< lt) - -tri-c< : {n : Level} → Trichotomous _==_ (_c<_ {suc n}) -tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) -tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst {!!} oiso refl) (o<→¬== a) ( o<→¬c> a ) -tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b)) -tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst {!!} oiso refl) - -c<> : {n : Level } { x y : OD {suc n}} → x c< y → y c< x → ⊥ -c<> {n} {x} {y} x<y y<x with tri-c< x y -c<> {n} {x} {y} x<y y<x | tri< a ¬b ¬c = ¬c y<x -c<> {n} {x} {y} x<y y<x | tri≈ ¬a b ¬c = o<→o> b ( c<→o< x<y ) -c<> {n} {x} {y} x<y y<x | tri> ¬a ¬b c = ¬a x<y +o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ ; otrans = λ () } == od∅ {n} eq→ ∅0 {w} (lift ()) @@ -257,18 +196,12 @@ ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d ∅< {n} {x} {y} d eq | lift () -∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox -∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x +-- ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox +-- ∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t -is-∋ : {n : Level} → ( x y : OD {suc n} ) → Dec ( x ∋ y ) -is-∋ {n} x y with tri-c< x y -is-∋ {n} x y | tri< a ¬b ¬c = no ¬c -is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c -is-∋ {n} x y | tri> ¬a ¬b c = yes c - is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) @@ -297,6 +230,9 @@ L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) ; otrans = {!!} } +omega : { n : Level } → Ordinal {n} +omega = record { lv = Suc Zero ; ord = Φ 1 } + OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} @@ -308,13 +244,16 @@ ; Power = Power ; Select = Select ; Replace = Replace - ; infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) + ; infinite = Ord omega ; isZF = isZF } where Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = sup-od ψ - Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} - Select X ψ = record { def = λ x → ( def X x ∧ ψ ( Ord x )) ; otrans = {!!} } + Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → X ∋ x → Set (suc n) ) → OD {suc n} + Select X ψ = record { def = λ x → ( (d : def X x ) → ψ (ord→od x) (subst (λ k → def X k ) (sym diso) d)) ; otrans = lemma } where + lemma : {x y : Ordinal} → ((d : def X x) → ψ (ord→od x) (subst (def X) (sym diso) d)) → + y o< x → (d : def X y) → ψ (ord→od y) (subst (def X) (sym diso) d) + lemma {x} {y} f y<x d = {!!} _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) Union : OD {suc n} → OD {suc n} @@ -328,7 +267,7 @@ _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet - A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) + A ∩ B = Select (A , B) ( λ x d → ( A ∋ x ) ∧ (B ∋ x) ) -- _∪_ : ( A B : ZFSet ) → ZFSet -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) {_} : ZFSet → ZFSet @@ -337,7 +276,7 @@ infixr 200 _∈_ -- infixr 230 _∩_ _∪_ infixr 220 _⊆_ - isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (ord→od ( record { lv = Suc Zero ; ord = Φ 1} )) + isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (Ord omega) isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair @@ -379,7 +318,7 @@ lemma-t = {!!} -- o<→c< (o<-subst (sup-lb (o<-subst (c<→o< P∋t) refl diso )) refl refl ) lemma-s : ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x lemma-s with osuc-≡< ( o<-subst (c<→o< lemma-t ) refl diso ) - lemma-s | case1 eq = def-subst ( ==-def-r (o≡→== eq) (subst (λ k → def k (od→ord x)) (sym oiso) t∋x ) ) oiso refl + lemma-s | case1 eq = def-subst {!!} oiso refl lemma-s | case2 lt = transitive {n} {minsup} {t} {x} (def-subst {!!} oiso refl ) t∋x -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t @@ -393,7 +332,7 @@ eq← lemma-eq {z} w = record { proj2 = w ; proj1 = def-subst {suc n} {_} {_} {A} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } lemma1 : od→ord (ZFSubset A (ord→od (od→ord t))) ≡ od→ord t - lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (==→o≡1 (lemma-eq)) + lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) {!!} lemma : od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x))) lemma = sup-o< union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → csuc z ∋ z @@ -412,11 +351,8 @@ union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} {!!} oiso (sym diso) ; proj2 = union-lemma-u X∋z } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t - selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) - selection {ψ} {X} {y} = record { - proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = {!!} } -- ψiso {ψ} (proj2 cond) (sym oiso) } - ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) {!!} } - } + selection : {X : OD } {ψ : (x : OD ) → x ∈ X → Set (suc n)} {y : OD} → ((d : X ∋ y ) → ψ y d ) ⇔ (Select X ψ ∋ y) + selection {ψ} {X} {y} = {!!} replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x replacement {ψ} X x = sup-c< ψ {x} ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) @@ -424,12 +360,11 @@ minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} minimul x not = {!!} regularity : (x : OD) (not : ¬ (x == od∅)) → - (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) + (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ d → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 (regularity x not ) = {!!} proj2 (regularity x not ) = record { eq→ = reg ; eq← = {!!} } where - reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y - reg {y} t with proj1 t - ... | x∈∅ = {!!} + reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ d → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y + reg {y} t = {!!} extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d @@ -440,34 +375,24 @@ lemma1 : {x : OD {suc n}} → od→ord x o< od→ord (x , x) lemma1 {x} = c<→o< ( proj1 (pair x x ) ) lemma2 : {x : OD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x) - lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) (sym ≡-def) + lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) {!!} lemma : {x : OD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 ) uxxx-union : {x : OD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k ; otrans = {!!} } ) lemma where lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x)) - lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) (sym ≡-def ) + lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) {!!} uxxx-2 : {x : OD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) } eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt uxxx-ord : {x : OD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x) - uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) (==→o≡ (subst₂ (λ j k → j == k ) (sym oiso) (sym od≡-def ) uxxx-2 )) - omega = record { lv = Suc Zero ; ord = Φ 1 } + uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) {!!} infinite : OD {suc n} - infinite = ord→od ( omega ) - infinity∅ : ord→od ( omega ) ∋ od∅ {suc n} - infinity∅ = def-subst {suc n} {_} {o∅} {infinite} {od→ord od∅} - {!!} refl (subst ( λ k → ( k ≡ od→ord od∅ )) diso (cong (λ k → od→ord k) o∅≡od∅ )) - infinite∋x : (x : OD) → infinite ∋ x → od→ord x o< omega - infinite∋x x lt = subst (λ k → od→ord x o< k ) diso t where - t : od→ord x o< od→ord (ord→od (omega)) - t = ∋→o< {n} {infinite} {x} lt - infinite∋uxxx : (x : OD) → osuc (od→ord x) o< omega → infinite ∋ Union (x , (x , x )) - infinite∋uxxx x lt = o<∋→ t where - t : od→ord (Union (x , (x , x))) o< od→ord (ord→od (omega)) - t = subst (λ k → od→ord (Union (x , (x , x))) o< k ) (sym diso ) ( subst ( λ k → k o< omega ) ( sym (uxxx-ord {x} ) ) lt ) + infinite = Ord omega + infinity∅ : Ord omega ∋ od∅ {suc n} + infinity∅ = {!!} infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) - infinity x lt = infinite∋uxxx x ( lemma (od→ord x) (infinite∋x x lt )) where + infinity x lt = {!!} where lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n)
--- a/ordinal.agda Tue Jun 18 23:40:17 2019 +0900 +++ b/ordinal.agda Thu Jun 20 13:18:18 2019 +0900 @@ -113,9 +113,9 @@ =→¬< {Zero} () =→¬< {Suc x} (s≤s lt) = =→¬< lt -o<¬≡ : {n : Level } ( ox oy : Ordinal {n}) → ox ≡ oy → ox o< oy → ⊥ -o<¬≡ ox ox refl (case1 lt) = =→¬< lt -o<¬≡ ox ox refl (case2 (s< lt)) = trio<≡ refl lt +o<¬≡ : {n : Level } { ox oy : Ordinal {n}} → ox ≡ oy → ox o< oy → ⊥ +o<¬≡ {_} {ox} {ox} refl (case1 lt) = =→¬< lt +o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt ¬x<0 : {n : Level} → { x : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} ) ¬x<0 {n} {x} (case1 ())
--- a/zf.agda Tue Jun 18 23:40:17 2019 +0900 +++ b/zf.agda Thu Jun 20 13:18:18 2019 +0900 @@ -36,7 +36,7 @@ (_,_ : ( A B : ZFSet ) → ZFSet) (Union : ( A : ZFSet ) → ZFSet) (Power : ( A : ZFSet ) → ZFSet) - (Select : ZFSet → ( ZFSet → Set m ) → ZFSet ) + (Select : (X : ZFSet ) → ( ψ : (x : ZFSet ) → X ∋ x → Set m ) → ZFSet ) (Replace : ZFSet → ( ZFSet → ZFSet ) → ZFSet ) (infinite : ZFSet) : Set (suc (n ⊔ m)) where @@ -53,7 +53,7 @@ _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set m _⊆_ A B {x} = A ∋ x → B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet - A ∩ B = Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) + A ∩ B = Select A ( λ x d → ( A ∋ x ) ∧ ( B ∋ x ) ) _∪_ : ( A B : ZFSet ) → ZFSet A ∪ B = Union (A , B) -- Select A ( λ x → ( A ∋ x ) ∨ ( B ∋ x ) ) is easer {_} : ZFSet → ZFSet @@ -74,7 +74,7 @@ -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) infinity∅ : ∅ ∈ infinite infinity : ∀( X x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite - selection : { ψ : ZFSet → Set m } → ∀ { X y : ZFSet } → ( ( y ∈ X ) ∧ ψ y ) ⇔ (y ∈ Select X ψ ) + selection : ∀ { X : ZFSet } → { ψ : (x : ZFSet ) → x ∈ X → Set m } → ∀ { y : ZFSet } → ( ( d : y ∈ X ) → ψ y d ) ⇔ (y ∈ Select X ψ ) -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) replacement : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( ψ x ∈ Replace X ψ ) -- -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] @@ -94,7 +94,7 @@ _,_ : ( A B : ZFSet ) → ZFSet Union : ( A : ZFSet ) → ZFSet Power : ( A : ZFSet ) → ZFSet - Select : ZFSet → ( ZFSet → Set m ) → ZFSet + Select : (X : ZFSet ) → ( ψ : (x : ZFSet ) → X ∋ x → Set m ) → ZFSet Replace : ZFSet → ( ZFSet → ZFSet ) → ZFSet infinite : ZFSet isZF : IsZF ZFSet _∋_ _≈_ ∅ _,_ Union Power Select Replace infinite