Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1074:1e7d20b15341
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 14 Dec 2022 12:18:48 +0900 |
parents | b3d695340773 |
children | 4e986bf9be8c |
files | src/zorn.agda |
diffstat | 1 files changed, 7 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Dec 14 11:21:16 2022 +0900 +++ b/src/zorn.agda Wed Dec 14 12:18:48 2022 +0900 @@ -1473,15 +1473,18 @@ supf0 = ZChain.supf (pzc (ob<x lim z<x)) msup : IsMinSUP A (UnionCF A f ay supf0 z) (supf0 z) msup = ZChain.is-minsup (pzc (ob<x lim z<x)) (o<→≤ <-osuc) + s1=0 : {u : Ordinal } → u o< z → supf1 u ≡ supf0 u + s1=0 {u} u<z = trans (sf1=sf (ordtrans u<z z<x)) (zeq _ _ (o<→≤ (osucc u<z)) (o<→≤ <-osuc) ) zm00 : {w : Ordinal } → odef (UnionCF A f ay supf1 z) w → w ≤ supf1 z - zm00 {w} ⟪ az , ch-init fc ⟫ = subst (λ k → w ≤ k ) (sym (sf1=sf z<x)) ( IsMinSUP.x≤sup msup ⟪ az , ch-init fc ⟫ ) -- U supf0 + zm00 {w} ⟪ az , ch-init fc ⟫ = subst (λ k → w ≤ k ) (sym (sf1=sf z<x)) ( IsMinSUP.x≤sup msup ⟪ az , ch-init fc ⟫ ) zm00 {w} ⟪ az , ch-is-sup u u<b su=u fc ⟫ = subst (λ k → w ≤ k ) (sym (sf1=sf z<x)) - ( IsMinSUP.x≤sup msup ⟪ az , ch-is-sup u u<b ? ? ⟫ ) -- U supf0 + ( IsMinSUP.x≤sup msup ⟪ az , ch-is-sup u u<b (trans (sym (s1=0 u<b)) su=u) (subst (λ k → FClosure A f k w) (s1=0 u<b) fc) ⟫ ) zm01 : { s : Ordinal } → odef A s → ( {x : Ordinal } → odef (UnionCF A f ay supf1 z) x → x ≤ s ) → supf1 z o≤ s - zm01 {s} as sup = subst (λ k → k o≤ s ) (sym (sf1=sf z<x)) ( IsMinSUP.minsup msup as zm02 ) where -- U supf1 + zm01 {s} as sup = subst (λ k → k o≤ s ) (sym (sf1=sf z<x)) ( IsMinSUP.minsup msup as zm02 ) where zm02 : {w : Ordinal } → odef (UnionCF A f ay supf0 z) w → w ≤ s zm02 {w} ⟪ az , ch-init fc ⟫ = sup ⟪ az , ch-init fc ⟫ - zm02 {w} ⟪ az , ch-is-sup u u<b su=u fc ⟫ = sup ⟪ az , ch-is-sup u u<b ? ? ⟫ + zm02 {w} ⟪ az , ch-is-sup u u<b su=u fc ⟫ = sup + ⟪ az , ch-is-sup u u<b (trans (s1=0 u<b) su=u) (subst (λ k → FClosure A f k w) (sym (s1=0 u<b)) fc) ⟫