Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1073:b3d695340773
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 14 Dec 2022 11:21:16 +0900 |
parents | 4ce084a0dce2 |
children | 1e7d20b15341 |
files | src/zorn.agda |
diffstat | 1 files changed, 17 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Dec 14 09:19:38 2022 +0900 +++ b/src/zorn.agda Wed Dec 14 11:21:16 2022 +0900 @@ -1467,7 +1467,23 @@ 0<sufz = ordtrans<-≤ (ZChain.0<supfz (pzc (ob<x lim 0<x ))) (OrdTrans (o≤-refl0 (sym (sf1=sf 0<x ))) (supf-mono o∅≤z)) is-minsup : {z : Ordinal} → z o≤ x → IsMinSUP A (UnionCF A f ay supf1 z) (supf1 z) - is-minsup = ? + is-minsup {z} z≤x with osuc-≡< z≤x + ... | case1 z=x = ? + ... | case2 z<x = record { as = asupf ; x≤sup = zm00 ; minsup = zm01 } where + supf0 = ZChain.supf (pzc (ob<x lim z<x)) + msup : IsMinSUP A (UnionCF A f ay supf0 z) (supf0 z) + msup = ZChain.is-minsup (pzc (ob<x lim z<x)) (o<→≤ <-osuc) + zm00 : {w : Ordinal } → odef (UnionCF A f ay supf1 z) w → w ≤ supf1 z + zm00 {w} ⟪ az , ch-init fc ⟫ = subst (λ k → w ≤ k ) (sym (sf1=sf z<x)) ( IsMinSUP.x≤sup msup ⟪ az , ch-init fc ⟫ ) -- U supf0 + zm00 {w} ⟪ az , ch-is-sup u u<b su=u fc ⟫ = subst (λ k → w ≤ k ) (sym (sf1=sf z<x)) + ( IsMinSUP.x≤sup msup ⟪ az , ch-is-sup u u<b ? ? ⟫ ) -- U supf0 + zm01 : { s : Ordinal } → odef A s → ( {x : Ordinal } → odef (UnionCF A f ay supf1 z) x → x ≤ s ) → supf1 z o≤ s + zm01 {s} as sup = subst (λ k → k o≤ s ) (sym (sf1=sf z<x)) ( IsMinSUP.minsup msup as zm02 ) where -- U supf1 + zm02 : {w : Ordinal } → odef (UnionCF A f ay supf0 z) w → w ≤ s + zm02 {w} ⟪ az , ch-init fc ⟫ = sup ⟪ az , ch-init fc ⟫ + zm02 {w} ⟪ az , ch-is-sup u u<b su=u fc ⟫ = sup ⟪ az , ch-is-sup u u<b ? ? ⟫ + + cfcs : {a b w : Ordinal } → a o< b → b o≤ x → supf1 a o< b → FClosure A f (supf1 a) w → odef (UnionCF A f ay supf1 b) w cfcs {a} {b} {w} a<b b≤x sa<b fc with osuc-≡< b≤x