Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 38:20cddbb2fc90
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 May 2019 14:20:35 +0900 |
parents | f10ceee99d00 |
children | 457e6626e0b1 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 10 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Thu May 23 13:48:27 2019 +0900 +++ b/ordinal-definable.agda Thu May 23 14:20:35 2019 +0900 @@ -115,27 +115,10 @@ ∅5 {n} record { lv = Zero ; ord = (OSuc .0 ord) } not = case2 Φ< ∅5 {n} record { lv = (Suc lv) ; ord = ord } not = case1 (s≤s z≤n) -postulate extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) +-- postulate extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) -∅7 : {n : Level} → { x : OD {n} } → ((z : OD {n}) → ¬ ( z c< x )) → x ≡ od∅ -∅7 {n} {x} not = cong ( λ k → record { def = k } ) lemma2 where - ⊥-eq : ⊥ ≡ ⊥ - ⊥-eq = refl - ⊥-leq : lift {_} {n} ⊥ ≡ lift {_} {n} ⊥ - ⊥-leq = refl - lemma0 : Lift n ⊥ → ⊥ - lemma0 (lift t ) = t - lemma0' : ⊥ → Lift n ⊥ - lemma0' t = lift t - lemma : (y : Ordinal {n}) → ¬ def x y - lemma y t = ⊥-elim ( not (ord→od y) (def-subst {n} {x} {y} t refl (sym diso) ) ) - lemmak : (y : Ordinal {n}) → {m : Level} → ¬ (Lift m (def x y )) - lemmak = {!!} - lemma1 : ( y : Ordinal {n}) → def x y ≡ def od∅ y - lemma1 y with ⊥-leq - lemma1 y | refl = {!!} - lemma2 : def x ≡ def od∅ - lemma2 = extensionality ( λ y → lemma1 y ) +-- ∅7 : {n : Level} → { x : OD {n} } → ((z : OD {n}) → ¬ ( z c< x )) → x ≡ od∅ +-- ∅7 {n} {x} not = cong ( λ k → record { def = k } ) lemma2 where ∅6 : {n : Level } ( x : Ordinal {suc n}) → o∅ o< x → ¬ x ≡ o∅ ∅6 {n} x lt eq with trio< {n} (o∅ {suc n}) x @@ -143,14 +126,13 @@ ∅6 {n} x lt refl | tri≈ ¬a b ¬c = ¬a lt ∅6 {n} x lt refl | tri> ¬a ¬b c = ¬b refl -∅2 : {n : Level} → ( x : OD {n} ) → ¬ ( x ≡ od∅ {n} ) → od∅ {n} c< x -∅2 {n} x not with od→ord x -... | ox = def-subst {n} {ord→od (od→ord x)} {od→ord (ord→od (o∅ {n}))} (o<→c< (∅5 (od→ord x) lemma )) oiso lemma0 where - lemma0 : od→ord (ord→od (o∅ {n})) ≡ od→ord (od∅ {n}) - lemma0 = trans diso (sym ( ∅4 (od∅ {n}) refl) ) - lemma : ¬ (od→ord x) ≡ o∅ - lemma = {!!} +∅7 : {n : Level} → ( x : OD {n} ) → od→ord x ≡ o∅ {n} → x ≡ od∅ {n} +∅7 = {!!} +∅9 : {n : Level} → (x : OD {n} ) → ¬ x ≡ od∅ → o∅ o< od→ord x +∅9 x not = ∅5 ( od→ord x) lemma where + lemma : ¬ od→ord x ≡ o∅ + lemma eq = not ( ∅7 x eq ) open Ordinal @@ -221,7 +203,7 @@ lemma : {z : Ordinal {n} } → def X z → z ≡ od→ord y lemma {z} X∋z = {!!} minimul : (x : OD {n} ) → ¬ x ≡ od∅ → OD {n} - minimul record { def = def } not = {!!} + minimul x not = ord→od ( ominimal (od→ord x) (∅9 x not) ) regularity : (x : OD) → (not : ¬ x ≡ od∅ ) → Lift (suc n) (x ∋ minimul x not ) ∧ (Select x (λ x₁ → Lift (suc n) ( minimul x not ∋ x₁) ∧ Lift (suc n) (x ∋ x₁)) ≡ od∅)