Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 39:457e6626e0b1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 May 2019 19:48:51 +0900 |
parents | 20cddbb2fc90 |
children | 9439ff020cbd |
files | ordinal-definable.agda ordinal.agda |
diffstat | 2 files changed, 53 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Thu May 23 14:20:35 2019 +0900 +++ b/ordinal-definable.agda Thu May 23 19:48:51 2019 +0900 @@ -115,7 +115,7 @@ ∅5 {n} record { lv = Zero ; ord = (OSuc .0 ord) } not = case2 Φ< ∅5 {n} record { lv = (Suc lv) ; ord = ord } not = case1 (s≤s z≤n) --- postulate extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) +postulate extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) -- ∅7 : {n : Level} → { x : OD {n} } → ((z : OD {n}) → ¬ ( z c< x )) → x ≡ od∅ -- ∅7 {n} {x} not = cong ( λ k → record { def = k } ) lemma2 where @@ -126,16 +126,60 @@ ∅6 {n} x lt refl | tri≈ ¬a b ¬c = ¬a lt ∅6 {n} x lt refl | tri> ¬a ¬b c = ¬b refl +∅8 : {n : Level} → ( x : Ordinal {n} ) → ¬ x o< o∅ {n} +∅8 {n} x (case1 ()) +∅8 {n} x (case2 ()) + +∅7'' : {n : Level} → o∅ {suc n} ≡ od→ord (od∅ {suc n}) +∅7'' {n} = sym ( ∅3 lemma ) where + ⊥-leq : lift {_} {n} ⊥ ≡ lift {_} {n} ⊥ + ⊥-leq = refl + lemma : {n : Level} (y : Ordinal {suc n}) → ¬ (y o< od→ord od∅) + lemma {n} y lt = {!!} + -- with ⊥-leq + -- ... | refl = ⊥-elim {!!} --- ∅1 (ord→od y) ( def-subst {suc n} {od∅} {y} {!!} {!!} {!!} ) + +∅10 : {n : Level} → (x : OD {n} ) → ¬ ( ( y : OD {n} ) → Lift (suc n) ( x ∋ y)) → x ≡ od∅ +∅10 {n} x not = cong ( λ k → record { def = k }) ( extensionality {n} ( λ y → {!!} ) ) where + ⊥-leq : lift {_} {n} ⊥ ≡ lift {_} {n} ⊥ + ⊥-leq = refl + lemma : (y : Ordinal {n} ) → def x y ≡ def od∅ y + lemma y with def x y | def od∅ y + ... | s | t = {!!} + +open Ordinal + + +∅77 : {n : Level} → (x : OD {suc n} ) → ¬ ( ord→od (o∅ {suc n}) ∋ x ) +∅77 {n} x lt with od→ord x | c<→o< {suc n} {x} {ord→od (o∅ {suc n})} lt +... | s | t = lemma0 s t where + lemma : ( ox : Ordinal {suc n} ) → ox o< o∅ {suc n} → ⊥ + lemma = ∅8 + lemma1 : { y : Ordinal {suc n} } { la lA : Nat } { oa : OrdinalD {suc n} la }{ oA : OrdinalD {suc n} lA } + → ( record {lv = la ; ord = oa } ≡ record {lv = lA ; ord = oA } ) + → (la < lv y ) ∨ ( oa d< ord y ) → (lA < lv y ) ∨ ( oA d< ord y ) + lemma1 refl x = x + lemma0 : ( ox : Ordinal {suc n} ) → ox o< od→ord (ord→od (o∅ {suc n})) → ⊥ + lemma0 = {!!} + +-- lemma0 ox t = lemma ox ( lemma1 (diso {suc n} {o∅ {suc n}}) t ) +--- ... | s | t = lemma s t (diso {suc n} {o∅ {suc n}}) where +-- with od→ord x | c<→o< {n} {x} {ord→od (o∅ {n})} lt +-- ∅8 {n} (od→ord x) ( def-subst {n} {ord→od (od→ord x) } {{!!}} ( c<→o< lt ) {!!} {!!} ) + +∅7' : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} +∅7' {n} = cong ( λ k → record { def = k }) ( extensionality {n} lemma ) where + lemma : ( x : Ordinal {n} ) → def (ord→od o∅) x ≡ def od∅ x + lemma x = {!!} + ∅7 : {n : Level} → ( x : OD {n} ) → od→ord x ≡ o∅ {n} → x ≡ od∅ {n} -∅7 = {!!} +∅7 {n} x eq = trans ( trans (sym oiso)( cong ( λ k → ord→od k ) eq ) ) ∅7' ∅9 : {n : Level} → (x : OD {n} ) → ¬ x ≡ od∅ → o∅ o< od→ord x ∅9 x not = ∅5 ( od→ord x) lemma where lemma : ¬ od→ord x ≡ o∅ lemma eq = not ( ∅7 x eq ) -open Ordinal - HOD→ZF : {n : Level} → ZF {suc n} {suc n} HOD→ZF {n} = record { ZFSet = OD {n}
--- a/ordinal.agda Thu May 23 14:20:35 2019 +0900 +++ b/ordinal.agda Thu May 23 19:48:51 2019 +0900 @@ -51,6 +51,11 @@ s<refl {n} {lv} {OSuc lv x} = s< s<refl s<refl {n} {Suc lv} {ℵ lv} = ℵs< +open import Relation.Binary.HeterogeneousEquality using (_≅_;refl) + +ordinal-cong : {n : Level} {x y : Ordinal {n}} → + lv x ≡ lv y → ord x ≅ ord y → x ≡ y +ordinal-cong refl refl = refl ≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ ≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t