changeset 1479:22523e8af390

zorn fix start
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 30 Jun 2024 06:44:27 +0900
parents 623b2f792154
children ba406e2ba8af
files src/zorn.agda
diffstat 1 files changed, 22 insertions(+), 22 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Sat Jun 29 21:08:29 2024 +0900
+++ b/src/zorn.agda	Sun Jun 30 06:44:27 2024 +0900
@@ -227,8 +227,8 @@
 
 -- open import Relation.Binary.Properties.Poset as Poset
 
-IsTotalOrderSet : ( A : HOD ) → Set (Level.suc n)
-IsTotalOrderSet A = {a b : HOD} → odef A (& a) → odef A (& b)  → Tri (a < b) (a ≡ b) (b < a )
+IsTotalOrderSet : ( A : HOD ) → Set n
+IsTotalOrderSet A = {a b : Ordinal } → odef A a → odef A b  → Tri (* a < * b) (a ≡ b) (* b < * a )
 
 ⊆-IsTotalOrderSet : { A B : HOD } →  B ⊆ A  → IsTotalOrderSet A → IsTotalOrderSet B
 ⊆-IsTotalOrderSet {A} {B} B⊆A T  ax ay = T (B⊆A ax) (B⊆A ay)
@@ -407,13 +407,13 @@
    --
    -- supf is minsup, so its UniofCF are equal, these are equal
    -- 
-   supfeq : {a b : Ordinal } → a o≤ z →  b o≤ z → UnionCF A f ay supf a ≡ UnionCF A f ay supf b → supf a ≡ supf b
+   supfeq : {a b : Ordinal } → a o≤ z →  b o≤ z → UnionCF A f ay supf a =h= UnionCF A f ay supf b → supf a ≡ supf b
    supfeq {a} {b} a≤z b≤z ua=ub with trio< (supf a) (supf b)
    ... | tri< sa<sb ¬b ¬c = ⊥-elim ( o≤> (
-             IsMinSUP.minsup (is-minsup b≤z) asupf (λ {z} uzb → IsMinSUP.x≤sup (is-minsup a≤z) (subst (λ k → odef k z) (sym ua=ub) uzb)) ) sa<sb )
+             IsMinSUP.minsup (is-minsup b≤z) asupf (λ {z} uzb → IsMinSUP.x≤sup (is-minsup a≤z) (eq←  ua=ub uzb) )) sa<sb )
    ... | tri≈ ¬a b ¬c = b
    ... | tri> ¬a ¬b sb<sa = ⊥-elim ( o≤> (
-             IsMinSUP.minsup (is-minsup a≤z) asupf (λ {z} uza → IsMinSUP.x≤sup (is-minsup b≤z) (subst (λ k → odef k z) ua=ub uza)) ) sb<sa )
+             IsMinSUP.minsup (is-minsup a≤z) asupf (λ {z} uza → IsMinSUP.x≤sup (is-minsup b≤z) (eq→ ua=ub uza) )) sb<sa )
 
    --
    -- supf a over b and supf a is not included in UnionCF a nor UnionCF b, so UnionCF b is equal to the UnionCF a
@@ -438,7 +438,7 @@
    x≤supfx→¬sa<sa : {a b : Ordinal } → b o≤ z → b o≤ supf a → ¬ (supf a o< supf b )
    x≤supfx→¬sa<sa {a} {b} b≤z b≤sa sa<sb = ⊥-elim ( o<¬≡ z27 sa<sb ) where -- x o≤ supf a ∧ supf a o< supf b → ⊥, because it defines the same UnionCF
          z27 : supf a ≡ supf b
-         z27 = supfeq (ordtrans (supf-inject sa<sb) b≤z) b≤z ? -- ( union-max  b≤sa b≤z sa<sb)
+         z27 = supfeq (ordtrans (supf-inject sa<sb) b≤z) b≤z ( union-max  b≤sa b≤z sa<sb)
 
    order : {a b w : Ordinal } → b o≤ z → supf a o< supf b → FClosure A f (supf a) w → w ≤ supf b
    order {a} {b} {w} b≤z sa<sb fc = IsMinSUP.x≤sup (is-minsup b≤z) (cfcs (supf-inject sa<sb) b≤z sa<b fc) where
@@ -465,38 +465,38 @@
    f-total : IsTotalOrderSet chain
    f-total {a} {b} ⟪ uaa , ch-is-sup ua sua<x sua=ua fca ⟫ ⟪ uab , ch-is-sup ub sub<x sub=ub fcb ⟫ =
      subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) ? ? fc-total where
-         fc-total : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
+         fc-total : Tri (* a < * b) (a ≡ b) (* b < * a )
          fc-total with trio< ua ub
          ... | tri< a₁ ¬b ¬c with ≤-ftrans  (order (o<→≤ sub<x) (subst₂ (λ j k → j o< k) (sym sua=ua) (sym sub=ub) a₁) fca ) (s≤fc (supf ub) f mf fcb )
-         ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00  (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where
-                  ct00 : * (& a) ≡ * (& b)
-                  ct00 = cong (*) eq1
-         ... | case2 a<b =  tri< a<b (λ eq → <-irr (case1 (sym eq)) a<b ) (λ lt → <-irr (case2 a<b ) lt)
+         ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ?)) lt)) ?  (λ lt → ⊥-elim (<-irr (case1 ?) lt)) where
+                  ct00 : a ≡ b
+                  ct00 = ?
+         ... | case2 a<b =  tri< a<b (λ eq → <-irr (case1 ?) a<b ) (λ lt → <-irr (case2 a<b ) lt)
          fc-total | tri≈ _ refl _ = fcn-cmp _ f mf fca fcb
          fc-total | tri> ¬a ¬b c with ≤-ftrans  (order (o<→≤ sua<x) (subst₂ (λ j k → j o< k) (sym sub=ub) (sym sua=ua) c) fcb ) (s≤fc (supf ua) f mf fca )
-         ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00  (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where
-                  ct00 : * (& a) ≡ * (& b)
-                  ct00 = cong (*) (sym eq1)
+         ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ?)) lt)) ?  (λ lt → ⊥-elim (<-irr (case1 ?) lt)) where
+                  ct00 : a ≡ b
+                  ct00 = ?
          ... | case2 b<a =  tri> (λ lt → <-irr (case2 b<a ) lt)  (λ eq → <-irr (case1 eq) b<a )  b<a
    f-total {a} {b} ⟪ uaa , ch-init fca ⟫ ⟪ uab , ch-is-sup ub sub<x sub=ub fcb ⟫ = ft00 where
-      ft01 : (& a) ≤ (& b) → Tri ( a <  b) ( a ≡  b) ( b <  a )
+      ft01 : a ≤ b → Tri ( * a <  * b) ( a ≡  b) ( * b <  * a )
       ft01 (case1 eq) = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym a=b)) lt)) a=b  (λ lt → ⊥-elim (<-irr (case1 a=b) lt))  where
          a=b : a ≡ b
-         a=b = subst₂ (λ j k → j ≡ k ) ? ? (cong (*) eq)
+         a=b = ? -- subst₂ (λ j k → j ≡ k ) ? ? (cong (*) eq)
       ft01 (case2 lt) = tri< a<b (λ eq → <-irr (case1 (sym eq)) a<b ) (λ lt → <-irr (case2 a<b ) lt)  where
-         a<b : a < b
-         a<b = subst₂ (λ j k → j < k ) ? ? lt
-      ft00 :   Tri ( a <  b) ( a ≡  b) ( b <  a )
+         a<b : * a < * b
+         a<b = ? -- subst₂ (λ j k → j < k ) ? ? lt
+      ft00 :   Tri ( * a <  * b) ( a ≡  b) ( * b <  * a )
       ft00 = ft01 (≤-ftrans (fcy<sup (o<→≤ sub<x) fca) (s≤fc {A} _ f mf fcb))
    f-total {a} {b} ⟪ uaa , ch-is-sup ua sua<x sua=ua fca ⟫ ⟪ uab , ch-init fcb ⟫ = ft00 where
-      ft01 : (& b) ≤ (& a) → Tri ( a <  b) ( a ≡  b) ( b <  a )
+      ft01 : (& b) ≤ (& a) → Tri ( * a <  * b) ( a ≡  b) ( * b <  * a )
       ft01 (case1 eq) = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym a=b)) lt)) a=b  (λ lt → ⊥-elim (<-irr (case1 a=b) lt))  where
          a=b : a ≡ b
-         a=b = subst₂ (λ j k → j ≡ k ) ? ? (cong (*) (sym eq))
+         a=b = ? -- subst₂ (λ j k → j ≡ k ) ? ? (cong (*) (sym eq))
       ft01 (case2 lt) = tri> (λ lt → <-irr (case2 b<a ) lt) (λ eq → <-irr (case1 eq) b<a ) b<a where
          b<a : b < a
          b<a = subst₂ (λ j k → j < k ) ? ? lt
-      ft00 :   Tri ( a <  b) ( a ≡  b) ( b <  a )
+      ft00 :   Tri ( * a <  * b) ( a ≡  b) ( * b <  * a )
       ft00 = ft01 (≤-ftrans (fcy<sup (o<→≤ sua<x) fcb) (s≤fc {A} _ f mf fca))
    f-total {a} {b} ⟪ uaa , ch-init fca ⟫ ⟪ uab , ch-init fcb ⟫ =
       subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) ? ?  (fcn-cmp y f mf fca fcb )