Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 876:23dcb59d1231
csupf cannot be proved in ZChain itself
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 17 Sep 2022 15:11:13 +0900 |
parents | 7f03e1d24961 |
children | eaa863c4ebe8 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Sep 17 12:53:51 2022 +0900 +++ b/src/zorn.agda Sat Sep 17 15:11:13 2022 +0900 @@ -410,8 +410,14 @@ supf-idem : {x : Ordinal } → supf (supf x) ≡ supf x supf-idem = ? - x≤supfx : (x : Ordinal ) → x o≤ supf x - x≤supfx = ? + x≤supfx : {x : Ordinal } → x o≤ supf x + x≤supfx {x} with trio< x (supf x) + ... | tri< a ¬b ¬c = o<→≤ a + ... | tri≈ ¬a b ¬c = o≤-refl0 b + ... | tri> ¬a ¬b c = ? -- supf x o< x + -- with osuc-≡< (supf-mono (o<→≤ c) ) + -- ... | case1 eq = ? + -- ... | case2 lt = ⊥-elim ( o<¬≡ supf-idem lt) supf∈A : {b : Ordinal} → b o≤ z → odef A (supf b) supf∈A {b} b≤z = subst (λ k → odef A k ) (sym (supf-is-sup b≤z)) ( SUP.as ( sup b≤z ) ) @@ -423,11 +429,20 @@ ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup u≤z ))) ) lt ) csupf1 : {b : Ordinal } → supf b o< z → odef (UnionCF A f mf ay supf z) (supf b) - csupf1 {b} sb<z = ⟪ asb , ch-is-sup (supf b) sb<z record { fcy<sup = fcy<sup ? ; order = ? ; supu=u = ? } (init (subst (λ k → odef A k) ? asb) (supf-idem) ) ⟫ where + csupf1 {b} sb<z = ⟪ asb , ch-is-sup (supf b) sb<z record { fcy<sup = fcy<sup (o<→≤ sb<z) ; order = order ; supu=u = supf-idem } (init (subst (λ k → odef A k) (sym supf-idem) asb) supf-idem ) ⟫ where b<z : b o< z - b<z = supf-inject0 supf-mono ( ordtrans<-≤ sb<z (x≤supfx z) ) + b<z = supf-inject0 supf-mono ( ordtrans<-≤ sb<z x≤supfx ) asb : odef A (supf b) asb = supf∈A (o<→≤ b<z) + supb : SUP A (UnionCF A f mf ay supf (supf b)) + supb = sup (o<→≤ sb<z) + supb-is-b : supf (supf b) ≡ & (SUP.sup supb) + supb-is-b = supf-is-sup (o<→≤ sb<z) + order : {s z1 : Ordinal} → supf s o< supf (supf b) → + FClosure A f (supf s) z1 → (z1 ≡ supf (supf b)) ∨ (z1 << supf (supf b)) + order {s} {z1} ss<ssb fs with SUP.x<sup supb ? + ... | case1 eq = ? + ... | case2 lt = ? -- ordering is not proved here but in ZChain1 @@ -766,7 +781,7 @@ -- supf0 px ≡ supf0 x no-extension : ( (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain x f) → ZChain A f mf ay x - no-extension P with osuc-≡< (ZChain.x≤supfx zc px) + no-extension P with osuc-≡< (ZChain.x≤supfx zc ) ... | case1 sfpx=px = ? where pchainpx : HOD pchainpx = record { od = record { def = λ z → (odef A z ∧ UChain A f mf ay supf0 px z ) ∨ FClosure A f px z } ; odmax = & A ; <odmax = zc00 } where