Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 853:2569ace27176
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 06 Sep 2022 04:38:39 +0900 |
parents | a28bb57c88e6 |
children | 14bd0c9ad267 d54487b6d43a |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Sep 06 01:18:54 2022 +0900 +++ b/src/zorn.agda Tue Sep 06 04:38:39 2022 +0900 @@ -915,8 +915,16 @@ , ch-init (subst₂ (λ j k → FClosure A f j k ) refl (supfx b=x) fc) ⟫ ... | ⟪ au , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ subst (λ k → odef A k) (supfx b=x) au , ch-is-sup u (subst (λ k → u o≤ k) (supfx b=x) u≤x) ? zc06 ⟫ where + zc08 : supf0 u o≤ supf0 px + zc08 = subst₂ (λ j k → j o≤ k) (sym (ChainP.supu=u is-sup)) refl u≤x zc06 : FClosure A f (supf1 px u) (supf1 px b) - zc06 = ? + zc06 with osuc-≡< zc08 + ... | case1 eq = subst₂ (λ j k → FClosure A f j k ) zc10 (supfx b=x) fc where + zc10 : supf0 u ≡ supf1 px u + zc10 = ? + ... | case2 lt = subst₂ (λ j k → FClosure A f j k ) (supf0=1 (o<→≤ zc09)) (supfx b=x) fc where + zc09 : u o< px + zc09 = supf-inject0 (ZChain.supf-mono zc) lt zc07 : FClosure A f (supf0 u) (supf0 px) zc07 = fc zc05 | case1 b≤px with ZChain.csupf zc b≤px @@ -924,8 +932,16 @@ , ch-init (subst₂ (λ j k → FClosure A f j k ) refl (supf0=1 b≤px) fc) ⟫ ... | ⟪ au , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ subst (λ k → odef A k) (supf0=1 b≤px) au , ch-is-sup u (subst (λ k → u o≤ k) (supf0=1 b≤px) u≤x) ? zc06 ⟫ where + zc08 : supf0 u o≤ supf0 b + zc08 = subst₂ (λ j k → j o≤ k) (sym (ChainP.supu=u is-sup)) refl u≤x zc06 : FClosure A f (supf1 px u) (supf1 px b) - zc06 = ? + zc06 with osuc-≡< zc08 + ... | case1 eq = subst₂ (λ j k → FClosure A f j k ) zc10 (supf0=1 b≤px) fc where + zc10 : supf0 u ≡ supf1 px u + zc10 = ? + ... | case2 lt = subst₂ (λ j k → FClosure A f j k ) (supf0=1 zc09) (supf0=1 b≤px) fc where + zc09 : u o≤ px + zc09 = ordtrans (supf-inject0 (ZChain.supf-mono zc) lt) b≤px zc07 : FClosure A f (supf0 u) (supf0 b) zc07 = fc sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 px z ≡ & (SUP.sup (sup z≤x))