Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1217:287d40830be5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Mar 2023 23:49:10 +0900 |
parents | 6861b48c1e08 |
children | 362e43a1477c |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 40 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sun Mar 05 20:07:24 2023 +0900 +++ b/src/Tychonoff.agda Sun Mar 05 23:49:10 2023 +0900 @@ -341,35 +341,42 @@ F⊆pxq {x} fx {y} xy = f⊆L F fx y (subst (λ k → odef k y) (sym *iso) xy) fx→px : {x : HOD } → filter F ∋ x → HOD fx→px {x} fx = Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) )) - fx→px1 : {p : HOD } → (fp : filter F ∋ ZFP p Q ) → p ⊆ P → fx→px fp ≡ p - fx→px1 {p} fp p⊆P = ==→o≡ record { eq→ = ? ; eq← = ? } where + fx→px1 : {p : HOD } {q : Ordinal } → odef Q q → (fp : filter F ∋ ZFP p Q ) → fx→px fp ≡ p + fx→px1 {p} {q} qq fp = ==→o≡ record { eq→ = ty20 ; eq← = ty22 } where + ty21 : {a b : Ordinal } → (pz : odef p a) → (qz : odef Q b) → ZFProduct P Q (& (* (& < * a , * b >))) + ty21 pz qz = F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz )) + ty32 : {a b : Ordinal } → (pz : odef p a) → (qz : odef Q b) → zπ1 (ty21 pz qz) ≡ a + ty32 {a} {b} pz qz = ty33 (ty21 pz qz) (cong (&) *iso) where + ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a + ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) + ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) ty20 : {x : Ordinal} → odef (fx→px fp) x → odef p x - ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = ? where - ty22 : ZFProduct p Q (& < * a , * b >) - ty22 = ab-pair pz qz + ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = subst (λ k → odef p k) a=x pz where ty24 : * x ≡ * a ty24 = begin - * x ≡⟨ cong (*) x=ψz ⟩ - _ ≡⟨ *iso ⟩ - * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz)))) ≡⟨ proj1 (zp-iso1 {p} {Q} ? ) ⟩ - * a ∎ where open ≡-Reasoning - ty23 : * (zπ1 ty22 ) ≡ * a - ty23 = proj1 ( zp-iso1 {p} {Q} (ab-pair pz qz) ) - ty21 : odef (ZFP P Q ) (& (* (& ( < * a , * b > ) ))) - ty21 = F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz)) - a=x : x ≡ a - a=x with subst (λ k → odef (ZFP P Q) k) &iso ty21 | subst (λ k → x ≡ k ) &iso x=ψz - ... | t | refl with proj1 ( zp-iso1 {P} {Q} t ) - ... | u = subst₂ (λ j k → j ≡ k ) (trans &iso ?) &iso (cong (&) u ) - pa : odef p x - pa with subst (λ k → odef (ZFP P Q) k) &iso ty21 | subst (λ k → x ≡ k ) &iso x=ψz - ... | t | refl = ? + * x ≡⟨ cong (*) x=ψz ⟩ + _ ≡⟨ *iso ⟩ + * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz)))) ≡⟨ cong (*) (ty32 pz qz) ⟩ + * a ∎ where open ≡-Reasoning + a=x : a ≡ x + a=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24)) + ty22 : {x : Ordinal} → odef p x → odef (fx→px fp) x + ty22 {x} px = record { z = _ ; az = ab-pair px qq ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) } where + ty12 : * x ≡ * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair px qq )))) + ty12 = begin + * x ≡⟨ sym (cong (*) (ty32 px qq )) ⟩ + * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair px qq )))) ∎ where open ≡-Reasoning + FPSet : HOD FPSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) ))) FPSet∋zpq : {q : HOD} → q ⊆ P → filter F ∋ ZFP q Q → FPSet ∋ q - FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = ? } where - ty11 : & q ≡ zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) ? ) - ty11 = ? + FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = sym (cong (&) ty10) } where + ty10 : Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ q + ty10 = begin + Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡⟨ ? ⟩ + Replace' (ZFP q Q) ( λ y xy → * (zπ1 (F⊆pxq fq xy) )) ≡⟨ refl ⟩ + fx→px fq ≡⟨ fx→px1 ? fq ⟩ + q ∎ where open ≡-Reasoning FPSet⊆PP : FPSet ⊆ Power P FPSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } @@ -393,11 +400,20 @@ x⊆pxq : * x ⊆ ZFP p Q x⊆pxq {w} xw with F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) xw ... | ab-pair {a} {b} pw qw = ab-pair ty08 qw where + ty21 : ZFProduct P Q (& (* (& < * a , * b >))) + ty21 = subst (λ k → ZFProduct P Q k) (cong & (sym *iso)) (ab-pair pw qw) + ty32 : ZFProduct P Q (& (* (& < * a , * b >))) + ty32 = f⊆L F (subst (odef (filter F)) (sym &iso) fx) + (& (* (& < * a , * b >))) (subst (λ k → odef k + (& (* (& < * a , * b >)))) (sym *iso) (subst (odef (* x)) (sym &iso) xw)) ty07 : odef (* x) (& < * a , * b >) ty07 = xw ty08 : odef p a ty08 = subst (λ k → odef k a ) (subst₂ (λ j k → j ≡ k) *iso *iso (sym (cong (*) x=ψz))) - record { z = _ ; az = xw ; x=ψz = ? } + record { z = _ ; az = xw ; x=ψz = sym (trans &iso (ty33 ty32 (cong (&) *iso ))) } where + ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a + ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) + ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) ty05 : filter F ∋ ZFP p Q ty05 = filter1 F (λ z wz → isP→PxQ p⊆P (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) fx) x⊆pxq ty06 : ZFP p Q ⊆ ZFP q Q