Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1218:362e43a1477c
brain damaged fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Mar 2023 10:45:34 +0900 (2023-03-06) |
parents | 287d40830be5 |
children | 91740267e62d |
files | src/OD.agda src/OPair.agda src/PFOD.agda src/Topology.agda src/Tychonoff.agda src/ZProduct.agda src/cardinal.agda src/generic-filter.agda |
diffstat | 8 files changed, 291 insertions(+), 277 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Sun Mar 05 23:49:10 2023 +0900 +++ b/src/OD.agda Mon Mar 06 10:45:34 2023 +0900 @@ -90,6 +90,8 @@ open HOD +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + record ODAxiom : Set (suc n) where field -- HOD is isomorphic to Ordinal (by means of Goedel number) @@ -102,10 +104,10 @@ ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal -- required in Replace sup-o≤ : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o≤ sup-o A ψ + ∋-irr : {X : HOD} {x : Ordinal } → (a b : def (od X) x) → a ≅ b -- possible order restriction (required in the axiom of infinite ) ho< : {x : HOD} → & x o< next (odmax x) - postulate odAxiom : ODAxiom open ODAxiom odAxiom @@ -369,7 +371,7 @@ az : odef A z x=ψz : x ≡ ψ z az -Replace' : (X : HOD) → ((x : HOD) → X ∋ x → HOD) → HOD +Replace' : (X : HOD) → ((x : HOD) → X ∋ x → HOD) → HOD Replace' X ψ = record { od = record { def = λ x → Replaced1 X (λ z xz → & (ψ (* z) (subst (λ k → odef X k) (sym &iso) xz) )) x } ; odmax = rmax ; <odmax = rmax< } where rmax : Ordinal rmax = osuc ( sup-o X (λ y X∋y → & (ψ (* y) (d→∋ X X∋y) )) ) @@ -378,6 +380,26 @@ r01 : & (ψ ( * (Replaced1.z lt ) ) (subst (λ k → odef X k) (sym &iso) (Replaced1.az lt) )) ≡ y r01 = sym (Replaced1.x=ψz lt ) + +Replace'-iso : (X : HOD) → (ψ : (x : HOD) → X ∋ x → HOD) → + Replace' (* (& X)) (λ y xy → ψ y (subst (λ k → k ∋ y ) *iso xy) ) ≡ Replace' X ( λ y xy → ψ y xy ) +Replace'-iso X ψ = ==→o≡ record { eq→ = ri0 ; eq← = ri1 } where + ri2 : {z : Ordinal } (a b : X ∋ (* z)) → & (ψ (* z) a) ≡ & (ψ (* z) b) + ri2 {z} a b = cong (λ k → & (ψ (* z) k)) ( HE.≅-to-≡ ( ∋-irr {X} {& (* z)} a b ) ) + ri0 : {x : Ordinal} + → Replaced1 (* (& X)) (λ z xz → & (ψ (* z) (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) xz)))) x + → Replaced1 X (λ z xz → & (ψ (* z) (subst (odef X) (sym &iso) xz))) x + ri0 {x} record { z = z ; az = az ; x=ψz = refl } = record { z = z ; az = subst (λ k → odef k z) *iso az + ; x=ψz = ri2 (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) az)) + (subst (odef X) (sym &iso) (subst (λ k → odef k z) *iso az) ) } + ri1 : {x : Ordinal} + → Replaced1 X (λ z xz → & (ψ (* z) (subst (odef X) (sym &iso) xz))) x + → Replaced1 (* (& X)) (λ z xz → & (ψ (* z) (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) xz)))) x + ri1 {x} record { z = z ; az = az ; x=ψz = refl } = record { z = z ; az = subst (λ k → odef k z) (sym *iso) az + ; x=ψz = ri2 (subst (λ k → odef X k) (sym &iso) az ) -- brain damaged below + (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) (subst (λ k → odef k z) (sym *iso) az))) } + + -- replacement←1 : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace1 X ψ ∋ ψ x -- replacement←1 {ψ} X x lt = record { z = & x ; az = lt ; x=ψz = cong (λ k → & (ψ k)) (sym *iso) } -- replacement→1 : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace1 X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y))
--- a/src/OPair.agda Sun Mar 05 23:49:10 2023 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,256 +0,0 @@ -{-# OPTIONS --allow-unsolved-metas #-} - -open import Level -open import Ordinals -module OPair {n : Level } (O : Ordinals {n}) where - -open import zf -open import logic -import OD -import ODUtil -import OrdUtil - -open import Relation.Nullary -open import Relation.Binary -open import Data.Empty -open import Relation.Binary -open import Relation.Binary.Core -open import Relation.Binary.PropositionalEquality -open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) - -open OD O -open OD.OD -open OD.HOD -open ODAxiom odAxiom - -open Ordinals.Ordinals O -open Ordinals.IsOrdinals isOrdinal -open Ordinals.IsNext isNext -open OrdUtil O -open ODUtil O - -open _∧_ -open _∨_ -open Bool - -open _==_ - -<_,_> : (x y : HOD) → HOD -< x , y > = (x , x ) , (x , y ) - -exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) -exg-pair {x} {y} = record { eq→ = left ; eq← = right } where - left : {z : Ordinal} → odef (x , y) z → odef (y , x) z - left (case1 t) = case2 t - left (case2 t) = case1 t - right : {z : Ordinal} → odef (y , x) z → odef (x , y) z - right (case1 t) = case2 t - right (case2 t) = case1 t - -ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y -ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq ) - -od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y -od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq ) - -eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > -eq-prod refl refl = refl - -xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y -xx=zy→x=y {x} {y} eq with trio< (& x) (& y) -xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) -xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) -xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) -xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b -xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl) -xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) -xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) - -prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) -prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where - lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y - lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where - lemma3 : ( x , x ) =h= ( y , z ) - lemma3 = ==-trans eq exg-pair - lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y - lemma1 {x} {y} eq with eq← eq {& y} (case2 refl) - lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) - lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) - lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z - lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl) - lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z - ... | refl with lemma2 (==-sym eq ) - ... | refl = refl - lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z - lemmax : x ≡ x' - lemmax with eq→ eq {& (x , x)} (case1 refl) - lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') - lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' - ... | refl = lemma1 (ord→== s ) - lemmay : y ≡ y' - lemmay with lemmax - ... | refl with lemma4 eq -- with (x,y)≡(x,y') - ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 )) - -prod-≡ : { x x' y y' : HOD } → < x , y > ≡ < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) -prod-≡ eq = prod-eq (ord→== (cong (&) eq )) - --- --- unlike ordered pair, ZFPair is not a HOD - -data ord-pair : (p : Ordinal) → Set n where - pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) - -ZFPair : OD -ZFPair = record { def = λ x → ord-pair x } - --- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) --- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' --- eq-pair refl refl = HE.refl - -pi1 : { p : Ordinal } → ord-pair p → Ordinal -pi1 ( pair x y) = x - -π1 : { p : HOD } → def ZFPair (& p) → HOD -π1 lt = * (pi1 lt ) - -pi2 : { p : Ordinal } → ord-pair p → Ordinal -pi2 ( pair x y ) = y - -π2 : { p : HOD } → def ZFPair (& p) → HOD -π2 lt = * (pi2 lt ) - -op-cons : ( ox oy : Ordinal ) → def ZFPair (& ( < * ox , * oy > )) -op-cons ox oy = pair ox oy - -def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x -def-subst df refl refl = df - -p-cons : ( x y : HOD ) → def ZFPair (& ( < x , y >)) -p-cons x y = def-subst {_} {_} {ZFPair} {& (< x , y >)} (pair (& x) ( & y )) refl ( - let open ≡-Reasoning in begin - & < * (& x) , * (& y) > - ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ - & < x , y > - ∎ ) - -op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op -op-iso (pair ox oy) = refl - -p-iso : { x : HOD } → (p : def ZFPair (& x) ) → < π1 p , π2 p > ≡ x -p-iso {x} p = ord≡→≡ (op-iso p) - -p-pi1 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π1 p ≡ x -p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) - -p-pi2 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π2 p ≡ y -p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) - -_⊗_ : (A B : HOD) → HOD -A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) - -product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b > -product→ {A} {B} {a} {b} A∋a B∋b = record { owner = _ ; ao = lemma1 ; ox = subst (λ k → odef k _) (sym *iso) lemma2 } where - lemma1 : odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >))) - lemma1 = replacement← B b B∋b - lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >) - lemma2 = replacement← A a A∋a - -x<nextA : {A x : HOD} → A ∋ x → & x o< next (odmax A) -x<nextA {A} {x} A∋x = ordtrans (c<→o< {x} {A} A∋x) ho< - -A<Bnext : {A B x : HOD} → & A o< & B → A ∋ x → & x o< next (odmax B) -A<Bnext {A} {B} {x} lt A∋x = osucprev (begin - osuc (& x) - <⟨ osucc (c<→o< A∋x) ⟩ - osuc (& A) - <⟨ osucc lt ⟩ - osuc (& B) - <⟨ osuc<nx ho< ⟩ - next (odmax B) - ∎ ) where open o≤-Reasoning O - -data ZFProduct (A B : HOD) : (p : Ordinal) → Set n where - ab-pair : {a b : Ordinal } → odef A a → odef B b → ZFProduct A B ( & ( < * a , * b > ) ) - -ZFP : (A B : HOD) → HOD -ZFP A B = record { od = record { def = λ x → ZFProduct A B x } - ; odmax = odmax ( A ⊗ B ) ; <odmax = λ {y} px → <odmax ( A ⊗ B ) (lemma0 px) } - where - lemma0 : {A B : HOD} {x : Ordinal} → ZFProduct A B x → odef (A ⊗ B) x - lemma0 {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) - -ZFP→ : {A B a b : HOD} → A ∋ a → B ∋ b → ZFP A B ∋ < a , b > -ZFP→ {A} {B} {a} {b} aa bb = subst (λ k → ZFProduct A B k ) (cong₂ (λ j k → & < j , k >) *iso *iso ) ( ab-pair aa bb ) - -zπ1 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal -zπ1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb) = a - -zp1 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef A (zπ1 zx) -zp1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = aa - -zπ2 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal -zπ2 (ab-pair {a} {b} aa bb) = b - -zp2 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef B (zπ2 zx) -zp2 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = bb - -zp-iso : { A B : HOD } → {x : Ordinal } → (p : odef (ZFP A B) x ) → & < * (zπ1 p) , * (zπ2 p) > ≡ x -zp-iso {A} {B} {_} (ab-pair {a} {b} aa bb) = refl - -zp-iso1 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (* (zπ1 p) ≡ (* a)) ∧ (* (zπ2 p) ≡ (* b)) -zp-iso1 {A} {B} {a} {b} pab = prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) zz11) ) where - zz11 : & < * (zπ1 pab) , * (zπ2 pab) > ≡ & < * a , * b > - zz11 = zp-iso pab - -ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x -ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) - -⊗⊆ZFPair : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFPair (& x) -⊗⊆ZFPair {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = aa ; x=ψz = x=ψa } ; ox = ox } = zfp01 where - zfp02 : Replace A (λ z → < z , * a >) ≡ * owner - zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) - zfp01 : def ZFPair (& x) - zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox - ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → def ZFPair k) (cong (&) zfp00) (op-cons b a ) where - zfp00 : < * b , * a > ≡ x - zfp00 = sym ( subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψb) ) - -⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → odef (ZFP A B) (& x) -⊗⊆ZFP {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = ba ; x=ψz = x=ψa } ; ox = ox } = zfp01 where - zfp02 : Replace A (λ z → < z , * a >) ≡ * owner - zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) - zfp01 : odef (ZFP A B) (& x) - zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox - ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → ZFProduct A B k ) (sym x=ψb) (ab-pair ab ba) - -ZFPproj1 : {A B X : HOD} → X ⊆ ZFP A B → HOD -ZFPproj1 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ1 (X⊆P px) )) - -ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD -ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) )) - --- simple version - -record ZProj1 (L : HOD) (x : Ordinal) : Set n where - field - pq : Ordinal - opq : ord-pair pq - Lpq : odef L pq - x=pi1 : x ≡ pi1 opq - --- LP' = Replace' L ( λ p lp → ZFPproj1 {P} {Q} {p} (λ {x} px → (LPQ lp _ (subst (λ k → odef k x) (sym *iso) px ) ))) - -Proj1 : (L P Q : HOD) → HOD -Proj1 L P Q = record { od = record { def = λ x → odef P x ∧ ZProj1 L x } ; odmax = & P ; <odmax = odef∧< } - -record ZProj2 (L : HOD) (x : Ordinal) : Set n where - field - pq : Ordinal - opq : ord-pair pq - Lpq : odef L pq - x=pi2 : x ≡ pi2 opq - -Proj2 : (L P Q : HOD) → HOD -Proj2 L P Q = record { od = record { def = λ x → odef Q x ∧ ZProj2 L x } ; odmax = & Q ; <odmax = odef∧< } -
--- a/src/PFOD.agda Sun Mar 05 23:49:10 2023 +0900 +++ b/src/PFOD.agda Mon Mar 06 10:45:34 2023 +0900 @@ -51,8 +51,7 @@ open import Data.List hiding (filter) open import Data.Maybe -import OPair -open OPair O +open import ZProduct O data Hω2 : (i : Nat) ( x : Ordinal ) → Set n where hφ : Hω2 0 o∅
--- a/src/Topology.agda Sun Mar 05 23:49:10 2023 +0900 +++ b/src/Topology.agda Mon Mar 06 10:45:34 2023 +0900 @@ -34,7 +34,7 @@ open ODC O open import filter O -open import OPair O +open import ZProduct O record Topology ( L : HOD ) : Set (suc n) where field
--- a/src/Tychonoff.agda Sun Mar 05 23:49:10 2023 +0900 +++ b/src/Tychonoff.agda Mon Mar 06 10:45:34 2023 +0900 @@ -33,7 +33,7 @@ open ODC O open import filter O -open import OPair O +open import ZProduct O open import Topology O -- open import maximum-filter O @@ -312,6 +312,11 @@ -- product topology of compact topology is compact +import Axiom.Extensionality.Propositional +postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + + Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where uflP : (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F) @@ -330,11 +335,19 @@ ... | case2 flp = subst (λ k → odef (filter F) k) (cong (&) (==→o≡ fl20)) flp where fl20 : (ZFP P Q \ Ord o∅) =h= ZFP P Q fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) ) ⟫ } - 0<P : o∅ o< & (ZFP P Q) - 0<P with trio< o∅ (& (ZFP P Q)) + 0<PQ : o∅ o< & (ZFP P Q) + 0<PQ with trio< o∅ (& (ZFP P Q)) ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim (ultra-filter.proper UF (subst (λ k → odef (filter F) k) (trans (sym b) (sym ord-od∅)) F∋PQ) ) ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) + apq : HOD + apq = ODC.minimal O (ZFP P Q) (0<P→ne 0<PQ) + is-apq : ZFP P Q ∋ apq + is-apq = ODC.x∋minimal O (ZFP P Q) (0<P→ne 0<PQ) + ap : odef P ( zπ1 is-apq ) + ap = zp1 is-apq + aq : odef Q ( zπ2 is-apq ) + aq = zp2 is-apq isP→PxQ : {x : HOD} → (x⊆P : x ⊆ P ) → ZFP x Q ⊆ ZFP P Q isP→PxQ {x} x⊆P (ab-pair p q) = ab-pair (x⊆P p) q F⊆pxq : {x : HOD } → filter F ∋ x → x ⊆ ZFP P Q @@ -366,16 +379,28 @@ ty12 = begin * x ≡⟨ sym (cong (*) (ty32 px qq )) ⟩ * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair px qq )))) ∎ where open ≡-Reasoning - + + FPSet : HOD FPSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) ))) FPSet∋zpq : {q : HOD} → q ⊆ P → filter F ∋ ZFP q Q → FPSet ∋ q FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = sym (cong (&) ty10) } where + -- brain damaged one + ty11 : {y : HOD} {xy : (* (& (ZFP q Q))) ∋ y } → + * (zπ1 ( (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ * (zπ1 ( (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) ))) + ty11 {y} {xy} = cong (λ k → * (zπ1 k)) ( HE.≅-to-≡ (∋-irr {ZFP P Q} a b )) where + a = F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy + b = F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) ty10 : Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ q ty10 = begin - Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡⟨ ? ⟩ + Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) + ≡⟨ + cong (λ k → Replace' (* (& (ZFP q Q))) k ) (f-extensionality (λ y → (f-extensionality (λ xy → ty11 {y} {xy})))) + ⟩ + Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) ))) + ≡⟨ Replace'-iso _ ( λ y xy → * (zπ1 (F⊆pxq fq xy) )) ⟩ Replace' (ZFP q Q) ( λ y xy → * (zπ1 (F⊆pxq fq xy) )) ≡⟨ refl ⟩ - fx→px fq ≡⟨ fx→px1 ? fq ⟩ + fx→px fq ≡⟨ fx→px1 aq fq ⟩ q ∎ where open ≡-Reasoning FPSet⊆PP : FPSet ⊆ Power P FPSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw @@ -383,7 +408,7 @@ = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) (zp1 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fz) (subst (λ k → odef (* z) k) (sym &iso) az1)) ) FP : Filter {Power P} {P} (λ x → x) - FP = record { filter = FPSet ; f⊆L = FPSet⊆PP ; filter1 = ty01 ; filter2 = {!!} } where + FP = record { filter = FPSet ; f⊆L = FPSet⊆PP ; filter1 = ty01 ; filter2 = ty02 } where ty01 : {p q : HOD} → Power P ∋ q → FPSet ∋ p → p ⊆ q → FPSet ∋ q ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FPSet∋zpq q⊆P (ty10 ty05 ty06 ) where @@ -420,6 +445,8 @@ ty06 (ab-pair wp wq ) = ab-pair (p⊆q wp) wq ty10 : filter F ∋ ZFP p Q → ZFP p Q ⊆ ZFP q Q → filter F ∋ ZFP q Q ty10 fzp zp⊆zq = filter1 F ty03 fzp zp⊆zq + ty02 : {p q : HOD} → FPSet ∋ p → FPSet ∋ q → Power P ∋ (p ∩ q) → FPSet ∋ (p ∩ q) + ty02 = ? UFP : ultra-filter FP UFP = record { proper = {!!} ; ultra = {!!} } @@ -427,9 +454,7 @@ uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP FQ : Filter {Power Q} {Q} (λ x → x) - FQ = record { filter = Proj2 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = {!!} ; filter2 = {!!} } where - ty00 : Proj2 (filter F) (Power P) (Power Q) ⊆ Power Q - ty00 {x} ⟪ QPx , ppf ⟫ = QPx + FQ = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = {!!} } UFQ : ultra-filter FQ UFQ = record { proper = {!!} ; ultra = {!!} } uflq : UFLP TQ FQ UFQ @@ -454,10 +479,10 @@ -- x is also an elment of Proj1 F because Proj1 F has UFLP (uflp) -- BaseP ∩ F is not empty -- (Base P ∩ F) ⊆ F , (Base P ) ⊆ F , - il1 : odef (Power P) z ∧ ZProj1 (filter F) z + il1 : odef (Power P) z ∧ ? -- ZFPproj1 (filter F) z il1 = {!!} -- UFLP.is-limit uflp ? bz nei1 : HOD - nei1 = Proj1 (* (Neighbor.u npq)) (Power P) (Power Q) + nei1 = ? -- ZFPproj1 (* (Neighbor.u npq)) (Power P) (Power Q) plimit : Ordinal plimit = UFLP.limit uflp nproper : {b : Ordinal } → * b ⊆ nei1 → o∅ o< b
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZProduct.agda Mon Mar 06 10:45:34 2023 +0900 @@ -0,0 +1,226 @@ +{-# OPTIONS --allow-unsolved-metas #-} + +open import Level +open import Ordinals +module ZProduct {n : Level } (O : Ordinals {n}) where + +open import zf +open import logic +import OD +import ODUtil +import OrdUtil + +open import Relation.Nullary +open import Relation.Binary +open import Data.Empty +open import Relation.Binary +open import Relation.Binary.Core +open import Relation.Binary.PropositionalEquality +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) + +open OD O +open OD.OD +open OD.HOD +open ODAxiom odAxiom + +open Ordinals.Ordinals O +open Ordinals.IsOrdinals isOrdinal +open Ordinals.IsNext isNext +open OrdUtil O +open ODUtil O + +open _∧_ +open _∨_ +open Bool + +open _==_ + +<_,_> : (x y : HOD) → HOD +< x , y > = (x , x ) , (x , y ) + +exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) +exg-pair {x} {y} = record { eq→ = left ; eq← = right } where + left : {z : Ordinal} → odef (x , y) z → odef (y , x) z + left (case1 t) = case2 t + left (case2 t) = case1 t + right : {z : Ordinal} → odef (y , x) z → odef (x , y) z + right (case1 t) = case2 t + right (case2 t) = case1 t + +ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y +ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq ) + +od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y +od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq ) + +eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > +eq-prod refl refl = refl + +xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y +xx=zy→x=y {x} {y} eq with trio< (& x) (& y) +xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) +xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) +xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) +xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b +xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl) +xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) +xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) + +prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) +prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where + lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y + lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where + lemma3 : ( x , x ) =h= ( y , z ) + lemma3 = ==-trans eq exg-pair + lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y + lemma1 {x} {y} eq with eq← eq {& y} (case2 refl) + lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) + lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) + lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z + lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl) + lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z + ... | refl with lemma2 (==-sym eq ) + ... | refl = refl + lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z + lemmax : x ≡ x' + lemmax with eq→ eq {& (x , x)} (case1 refl) + lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') + lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' + ... | refl = lemma1 (ord→== s ) + lemmay : y ≡ y' + lemmay with lemmax + ... | refl with lemma4 eq -- with (x,y)≡(x,y') + ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 )) + +prod-≡ : { x x' y y' : HOD } → < x , y > ≡ < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) +prod-≡ eq = prod-eq (ord→== (cong (&) eq )) + +-- +-- unlike ordered pair, ZFPair is not a HOD + +data ord-pair : (p : Ordinal) → Set n where + pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) + +ZFPair : OD +ZFPair = record { def = λ x → ord-pair x } + +-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +-- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' +-- eq-pair refl refl = HE.refl + +pi1 : { p : Ordinal } → ord-pair p → Ordinal +pi1 ( pair x y) = x + +π1 : { p : HOD } → def ZFPair (& p) → HOD +π1 lt = * (pi1 lt ) + +pi2 : { p : Ordinal } → ord-pair p → Ordinal +pi2 ( pair x y ) = y + +π2 : { p : HOD } → def ZFPair (& p) → HOD +π2 lt = * (pi2 lt ) + +op-cons : ( ox oy : Ordinal ) → def ZFPair (& ( < * ox , * oy > )) +op-cons ox oy = pair ox oy + +def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x +def-subst df refl refl = df + +p-cons : ( x y : HOD ) → def ZFPair (& ( < x , y >)) +p-cons x y = def-subst {_} {_} {ZFPair} {& (< x , y >)} (pair (& x) ( & y )) refl ( + let open ≡-Reasoning in begin + & < * (& x) , * (& y) > + ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ + & < x , y > + ∎ ) + +op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op +op-iso (pair ox oy) = refl + +p-iso : { x : HOD } → (p : def ZFPair (& x) ) → < π1 p , π2 p > ≡ x +p-iso {x} p = ord≡→≡ (op-iso p) + +p-pi1 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π1 p ≡ x +p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) + +p-pi2 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π2 p ≡ y +p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) + +_⊗_ : (A B : HOD) → HOD +A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) + +product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b > +product→ {A} {B} {a} {b} A∋a B∋b = record { owner = _ ; ao = lemma1 ; ox = subst (λ k → odef k _) (sym *iso) lemma2 } where + lemma1 : odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >))) + lemma1 = replacement← B b B∋b + lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >) + lemma2 = replacement← A a A∋a + +data ZFProduct (A B : HOD) : (p : Ordinal) → Set n where + ab-pair : {a b : Ordinal } → odef A a → odef B b → ZFProduct A B ( & ( < * a , * b > ) ) + +ZFP : (A B : HOD) → HOD +ZFP A B = record { od = record { def = λ x → ZFProduct A B x } + ; odmax = odmax ( A ⊗ B ) ; <odmax = λ {y} px → <odmax ( A ⊗ B ) (lemma0 px) } + where + lemma0 : {A B : HOD} {x : Ordinal} → ZFProduct A B x → odef (A ⊗ B) x + lemma0 {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) + +ZFP→ : {A B a b : HOD} → A ∋ a → B ∋ b → ZFP A B ∋ < a , b > +ZFP→ {A} {B} {a} {b} aa bb = subst (λ k → ZFProduct A B k ) (cong₂ (λ j k → & < j , k >) *iso *iso ) ( ab-pair aa bb ) + +zπ1 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal +zπ1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb) = a + +zp1 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef A (zπ1 zx) +zp1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = aa + +zπ2 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal +zπ2 (ab-pair {a} {b} aa bb) = b + +zp2 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef B (zπ2 zx) +zp2 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = bb + +zp-iso : { A B : HOD } → {x : Ordinal } → (p : odef (ZFP A B) x ) → & < * (zπ1 p) , * (zπ2 p) > ≡ x +zp-iso {A} {B} {_} (ab-pair {a} {b} aa bb) = refl + +zp-iso1 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (* (zπ1 p) ≡ (* a)) ∧ (* (zπ2 p) ≡ (* b)) +zp-iso1 {A} {B} {a} {b} pab = prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) zz11) ) where + zz11 : & < * (zπ1 pab) , * (zπ2 pab) > ≡ & < * a , * b > + zz11 = zp-iso pab + +ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x +ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) + +⊗⊆ZFPair : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFPair (& x) +⊗⊆ZFPair {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = aa ; x=ψz = x=ψa } ; ox = ox } = zfp01 where + zfp02 : Replace A (λ z → < z , * a >) ≡ * owner + zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) + zfp01 : def ZFPair (& x) + zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox + ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → def ZFPair k) (cong (&) zfp00) (op-cons b a ) where + zfp00 : < * b , * a > ≡ x + zfp00 = sym ( subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψb) ) + +⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → odef (ZFP A B) (& x) +⊗⊆ZFP {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = ba ; x=ψz = x=ψa } ; ox = ox } = zfp01 where + zfp02 : Replace A (λ z → < z , * a >) ≡ * owner + zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) + zfp01 : odef (ZFP A B) (& x) + zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox + ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → ZFProduct A B k ) (sym x=ψb) (ab-pair ab ba) + +ZFPproj1 : {A B X : HOD} → X ⊆ ZFP A B → HOD +ZFPproj1 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ1 (X⊆P px) )) + +ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD +ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) )) + +ZFProj1-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a +ZFProj1-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) +... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) + +ZFProj2-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b +ZFProj2-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) +... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) +
--- a/src/cardinal.agda Sun Mar 05 23:49:10 2023 +0900 +++ b/src/cardinal.agda Mon Mar 06 10:45:34 2023 +0900 @@ -10,7 +10,6 @@ import OD hiding ( _⊆_ ) import ODC -import OPair open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties @@ -22,8 +21,8 @@ open inOrdinal O open OD O open OD.OD -open OPair O open ODAxiom odAxiom +open import ZProduct O import OrdUtil import ODUtil
--- a/src/generic-filter.agda Sun Mar 05 23:49:10 2023 +0900 +++ b/src/generic-filter.agda Mon Mar 06 10:45:34 2023 +0900 @@ -52,8 +52,7 @@ open import Data.List hiding (filter) open import Data.Maybe -import OPair -open OPair O +open import ZProduct O record CountableModel : Set (suc (suc n)) where field