Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 274:29a85a427ed2
ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Apr 2020 15:09:07 +0900 |
parents | 9ccf8514c323 |
children | 455792eaa611 |
files | OD.agda cardinal.agda zf.agda |
diffstat | 3 files changed, 12 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sat Jan 11 20:11:51 2020 +0900 +++ b/OD.agda Sat Apr 25 15:09:07 2020 +0900 @@ -316,14 +316,14 @@ ; power→ = power→ ; power← = power← ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} - -- ; ε-induction = {!!} + ; ε-induction = ε-induction ; infinity∅ = infinity∅ ; infinity = infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = replacement→ - ; choice-func = choice-func - ; choice = choice + -- ; choice-func = choice-func + -- ; choice = choice } where pair→ : ( x y t : ZFSet ) → (x , y) ∋ t → ( t == x ) ∨ ( t == y )
--- a/cardinal.agda Sat Jan 11 20:11:51 2020 +0900 +++ b/cardinal.agda Sat Apr 25 15:09:07 2020 +0900 @@ -5,6 +5,7 @@ open import zf open import logic import OD +import OPair open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties @@ -16,6 +17,7 @@ open inOrdinal O open OD O open OD.OD +open OPair O open _∧_ open _∨_
--- a/zf.agda Sat Jan 11 20:11:51 2020 +0900 +++ b/zf.agda Sat Apr 25 15:09:07 2020 +0900 @@ -19,7 +19,7 @@ (Select : (X : ZFSet ) → ( ψ : (x : ZFSet ) → Set m ) → ZFSet ) (Replace : ZFSet → ( ZFSet → ZFSet ) → ZFSet ) (infinite : ZFSet) - : Set (suc (n ⊔ m)) where + : Set (suc (n ⊔ suc m)) where field isEquivalence : IsEquivalence {n} {m} {ZFSet} _≈_ -- ∀ x ∀ y ∃ z ∀ t ( z ∋ t → t ≈ x ∨ t ≈ y) @@ -53,9 +53,9 @@ -- minimal : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet -- regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimal x not ∈ x ∧ ( minimal x not ∩ x ≈ ∅ ) ) -- another form of regularity - -- ε-induction : { ψ : ZFSet → Set m} - -- → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) - -- → (x : ZFSet ) → ψ x + ε-induction : { ψ : ZFSet → Set (suc m)} + → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) + → (x : ZFSet ) → ψ x -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) infinity∅ : ∅ ∈ infinite infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite @@ -64,10 +64,10 @@ replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → x ∈ X → ψ x ∈ Replace X ψ replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( lt : x ∈ Replace X ψ ) → ¬ ( ∀ (y : ZFSet) → ¬ ( x ≈ ψ y ) ) -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] - choice-func : (X : ZFSet ) → {x : ZFSet } → ¬ ( x ≈ ∅ ) → ( X ∋ x ) → ZFSet - choice : (X : ZFSet ) → {A : ZFSet } → ( X∋A : X ∋ A ) → (not : ¬ ( A ≈ ∅ )) → A ∋ choice-func X not X∋A + -- choice-func : (X : ZFSet ) → {x : ZFSet } → ¬ ( x ≈ ∅ ) → ( X ∋ x ) → ZFSet + -- choice : (X : ZFSet ) → {A : ZFSet } → ( X∋A : X ∋ A ) → (not : ¬ ( A ≈ ∅ )) → A ∋ choice-func X not X∋A -record ZF {n m : Level } : Set (suc (n ⊔ m)) where +record ZF {n m : Level } : Set (suc (n ⊔ suc m)) where infixr 210 _,_ infixl 200 _∋_ infixr 220 _≈_