Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1272:2a176e2694ab
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Mar 2023 10:25:46 +0900 |
parents | dc5abc7b8473 |
children | 30540f151ae0 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 52 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Sun Mar 26 20:30:46 2023 +0900 +++ b/src/generic-filter.agda Wed Mar 29 10:25:46 2023 +0900 @@ -339,13 +339,34 @@ -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } -- -- We can define the valuation, but to use this, we need V=L, which makes things complicated. --- --- val : (x : HOD) → (G : HOD) → HOD --- val x G = TransFinite {λ x → HOD } ind (& x) where --- ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD --- ind x valy = record { od = record { def = λ z → valS G x z valy } ; odmax = x ; <odmax = v02 } where --- v02 : {z : Ordinal} → valS G x z valy → z o< x --- v02 {z} lt = valS.z<x lt + +val< : {x y p : Ordinal} → odef (* x) ( & < * y , * p > ) → y o< x +val< {x} {y} {p} xyp = osucprev ( begin + osuc y ≤⟨ osucc (odef< (subst (λ k → odef (* y , * y) k) &iso (v00 _ _ ) )) ⟩ + & (* y , * y) <⟨ c<→o< (v01 _ _) ⟩ + & < * y , * p > <⟨ odef< xyp ⟩ + & (* x) ≡⟨ &iso ⟩ + x ∎ ) where + v00 : (x y : HOD) → odef (x , y) (& x) + v00 _ _ = case1 refl + v01 : (x y : HOD) → < x , y > ∋ (x , x) + v01 _ _ = case1 refl + open o≤-Reasoning O + +record valS (G : HOD) (x z : Ordinal) (val : (y : Ordinal) → y o< x → HOD): Set n where + field + y p : Ordinal + G∋p : odef G p + is-val : odef (* x) ( & < * y , * p > ) + z=valy : z ≡ & (val y (val< is-val)) + z<x : z o< x + +val : (x : HOD) → (G : HOD) → HOD +val x G = TransFinite {λ x → HOD } ind (& x) where + ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD + ind x valy = record { od = record { def = λ z → valS G x z valy } ; odmax = x ; <odmax = v02 } where + v02 : {z : Ordinal} → valS G x z valy → z o< x + v02 {z} lt = valS.z<x lt -- -- What we nedd @@ -353,8 +374,10 @@ -- M ⊆ M[G] -- M[G] ∋ G -- M[G] ∋ ∪G --- L of M ≡ L of M[G] +-- +-- assume countable L as M -- L is a countable subset of Power ω i.e. Power ω ∩ M +-- it defines countable Ordinal -- -- Generic Filter is a countable sequence of element of M -- Mg is set of all elementns of M which contains an element of G @@ -371,8 +394,8 @@ MgH : {L P : HOD} (LP : L ⊆ Power P) (M : HOD) (G : GenericFilter {L} {P} LP M) → HOD MgH {L} {P} LP M G = record { od = record { def = λ x → odef M x ∧ Mg LP M G x } ; odmax = & M ; <odmax = odef∧< } -MG : {L P : HOD} (LP : L ⊆ Power P) (M : HOD) (G : GenericFilter {L} {P} LP M) → HOD -MG {L} {P} LP M G = M ∪ Union (MgH LP M G) +MG1 : {L P : HOD} (LP : L ⊆ Power P) (M : HOD) (G : GenericFilter {L} {P} LP M) → HOD +MG1 {L} {P} LP M G = M ∪ Union (MgH LP M G) TCS : (G : HOD) → Set (Level.suc n) TCS G = {x y : HOD} → G ∋ x → x ∋ y → G ∋ y @@ -381,3 +404,22 @@ → (C : CountableModel ) → HOD GH P L p0 LPP Lp0 C = ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C )) +module _ {L P : HOD} (LP : L ⊆ Power P) (M : HOD) (GF : GenericFilter {L} {P} LP M) where + + MG = MG1 {L} {P} LP M GF + G = ⊆-Ideal.ideal (genf GF) + + M⊆MG : M ⊆ MG + M⊆MG = case1 + + MG∋G : MG ∋ G + MG∋G = case2 record { owner = ? ; ao = ? ; ox = ? } where + gf00 : ? + gf00 = ? + + MG∋UG : MG ∋ Union G + MG∋UG = case2 record { owner = ? ; ao = ? ; ox = ? } where + gf00 : ? + gf00 = ? + +