Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 194:2a5844398f1c
emulate ε-induction proof
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jul 2019 11:27:33 +0900 |
parents | 0b9645a65542 |
children | 0cefb1e4d2cc |
files | OD.agda |
diffstat | 1 files changed, 14 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 29 08:41:16 2019 +0900 +++ b/OD.agda Mon Jul 29 11:27:33 2019 +0900 @@ -559,18 +559,18 @@ lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl) choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → OD {suc n} - choice-func' X ∋-p not = c + choice-func' X ∋-p not = lemma-ord (lv (osuc (od→ord X))) (ord (osuc (od→ord X))) <-osuc where - ψ : (y : OD {suc n} ) → Set (suc (suc n)) - ψ y = OD {suc n} - lemma : ( x : OD {suc n} ) → ({ y : OD {suc n} } → x ∋ y → ψ y) → ψ x - lemma x prev = lemma1 (od→ord X) <-osuc where - lemma1 : (ox : Ordinal {suc n}) → ox o< osuc (od→ord X) → OD {suc n} - lemma1 ox lt with ∋-p X (ord→od ox) - lemma1 ox lt | yes p = ord→od ox - lemma1 record { lv = Zero ; ord = (Φ .0) } lt | no ¬p = {!!} - lemma1 record { lv = Zero ; ord = (OSuc .0 ord₁) } lt | no ¬p = lemma1 record { lv = Zero ; ord = ord₁ } {!!} - lemma1 record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } lt | no ¬p = {!!} - lemma1 record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } lt | no ¬p = lemma1 record { lv = Suc lv₁ ; ord = ord₁ } {!!} - c : OD {suc n} - c = ε-induction (λ {x} → lemma x) X + lemma-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly } + → (ly < lx) ∨ (oy d< ox ) → OD {suc n} + lemma-ord Zero (Φ 0) (case1 ()) + lemma-ord Zero (Φ 0) (case2 ()) + lemma-ord Zero (OSuc 0 ox) lt with ∋-p X (ord→od record { lv = Zero ; ord = OSuc 0 ox }) + lemma-ord Zero (OSuc Zero ox) lt | yes p = ord→od record { lv = Zero ; ord = OSuc 0 ox } + lemma-ord Zero (OSuc Zero ox) {ly} {oy} lt | no ¬p = lemma-ord Zero ox {!!} + lemma-ord (Suc lx) (OSuc (Suc lx) ox) lt with ∋-p X (ord→od record { lv = (Suc lx) ; ord = ox } ) + lemma-ord (Suc lx) (OSuc (Suc lx) ox) lt | yes p = ord→od record { lv = (Suc lx) ; ord = ox } + lemma-ord (Suc lx) (OSuc (Suc lx) ox) {ly} {oy} lt | no ¬p = lemma-ord (Suc lx) ox {!!} + lemma-ord (Suc lx) (Φ (Suc lx)) lt with ∋-p X (ord→od record { lv = Suc lx ; ord = Φ (Suc lx)}) + lemma-ord (Suc lx) (Φ (Suc lx)) lt | yes p = ord→od record { lv = Suc lx ; ord = Φ (Suc lx)} + lemma-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} lt | no ¬p = {!!}