Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 195:0cefb1e4d2cc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jul 2019 11:49:58 +0900 |
parents | 2a5844398f1c |
children | a3211dcb4d83 |
files | OD.agda |
diffstat | 1 files changed, 4 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 29 11:27:33 2019 +0900 +++ b/OD.agda Mon Jul 29 11:49:58 2019 +0900 @@ -565,12 +565,9 @@ → (ly < lx) ∨ (oy d< ox ) → OD {suc n} lemma-ord Zero (Φ 0) (case1 ()) lemma-ord Zero (Φ 0) (case2 ()) - lemma-ord Zero (OSuc 0 ox) lt with ∋-p X (ord→od record { lv = Zero ; ord = OSuc 0 ox }) - lemma-ord Zero (OSuc Zero ox) lt | yes p = ord→od record { lv = Zero ; ord = OSuc 0 ox } - lemma-ord Zero (OSuc Zero ox) {ly} {oy} lt | no ¬p = lemma-ord Zero ox {!!} - lemma-ord (Suc lx) (OSuc (Suc lx) ox) lt with ∋-p X (ord→od record { lv = (Suc lx) ; ord = ox } ) - lemma-ord (Suc lx) (OSuc (Suc lx) ox) lt | yes p = ord→od record { lv = (Suc lx) ; ord = ox } - lemma-ord (Suc lx) (OSuc (Suc lx) ox) {ly} {oy} lt | no ¬p = lemma-ord (Suc lx) ox {!!} + lemma-ord lx (OSuc lx ox) lt with ∋-p X (ord→od record { lv = lx ; ord = OSuc lx ox }) + lemma-ord lx (OSuc lx ox) lt | yes p = ord→od record { lv = lx ; ord = OSuc lx ox } + lemma-ord lx (OSuc lx ox) {ly} {oy} lt | no ¬p = lemma-ord lx ox {ly} {oy} {!!} lemma-ord (Suc lx) (Φ (Suc lx)) lt with ∋-p X (ord→od record { lv = Suc lx ; ord = Φ (Suc lx)}) lemma-ord (Suc lx) (Φ (Suc lx)) lt | yes p = ord→od record { lv = Suc lx ; ord = Φ (Suc lx)} - lemma-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} lt | no ¬p = {!!} + lemma-ord (Suc lx) (Φ .(Suc lx)) {ly} {oy} (case1 lt ) | no ¬p = {!!}