Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 196:a3211dcb4d83
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jul 2019 11:58:10 +0900 |
parents | 0cefb1e4d2cc |
children | b114cf5b9130 |
files | OD.agda |
diffstat | 1 files changed, 8 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 29 11:49:58 2019 +0900 +++ b/OD.agda Mon Jul 29 11:58:10 2019 +0900 @@ -558,16 +558,20 @@ lx ≡ ly → ly ≡ lv (od→ord z) → ψ z lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl) - choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → OD {suc n} + record choiced {n : Level} ( X : OD {suc n}) : Set (suc (suc n)) where + field + a-choice : OD {suc n} + is-in : X ∋ a-choice + choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → choiced X choice-func' X ∋-p not = lemma-ord (lv (osuc (od→ord X))) (ord (osuc (od→ord X))) <-osuc where lemma-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly } - → (ly < lx) ∨ (oy d< ox ) → OD {suc n} + → (ly < lx) ∨ (oy d< ox ) → choiced X lemma-ord Zero (Φ 0) (case1 ()) lemma-ord Zero (Φ 0) (case2 ()) lemma-ord lx (OSuc lx ox) lt with ∋-p X (ord→od record { lv = lx ; ord = OSuc lx ox }) - lemma-ord lx (OSuc lx ox) lt | yes p = ord→od record { lv = lx ; ord = OSuc lx ox } + lemma-ord lx (OSuc lx ox) lt | yes p = record { a-choice = ord→od record { lv = lx ; ord = OSuc lx ox } ; is-in = p } lemma-ord lx (OSuc lx ox) {ly} {oy} lt | no ¬p = lemma-ord lx ox {ly} {oy} {!!} lemma-ord (Suc lx) (Φ (Suc lx)) lt with ∋-p X (ord→od record { lv = Suc lx ; ord = Φ (Suc lx)}) - lemma-ord (Suc lx) (Φ (Suc lx)) lt | yes p = ord→od record { lv = Suc lx ; ord = Φ (Suc lx)} + lemma-ord (Suc lx) (Φ (Suc lx)) lt | yes p = record { a-choice = ord→od record { lv = Suc lx ; ord = Φ (Suc lx)} ; is-in = p } lemma-ord (Suc lx) (Φ .(Suc lx)) {ly} {oy} (case1 lt ) | no ¬p = {!!}