Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 571:2ade91846f57
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 May 2022 19:51:51 +0900 |
parents | c642cbafc07a |
children | 427e36467a18 |
files | src/zorn.agda |
diffstat | 1 files changed, 39 insertions(+), 37 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon May 02 12:43:42 2022 +0900 +++ b/src/zorn.agda Mon May 02 19:51:51 2022 +0900 @@ -54,7 +54,7 @@ -- Partial Order on HOD ( possibly limited in A ) -- -_<<_ : (x y : Ordinal ) → Set n +_<<_ : (x y : Ordinal ) → Set n -- Set n order x << y = * x < * y POO : IsStrictPartialOrder _≡_ _<<_ @@ -233,9 +233,7 @@ record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where field - chain : Ordinal - chain⊆B : (* chain) ⊆' B - x<sup : {y : Ordinal} → odef (* chain) y → (y ≡ x ) ∨ (y << x ) + x<sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) record ZChain ( A : HOD ) {x : Ordinal} (ax : odef A x) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) (sup : (C : HOD ) → ( C ⊆' A) → IsTotalOrderSet C → Ordinal) ( z : Ordinal ) : Set (Level.suc n) where @@ -277,8 +275,8 @@ --- irrelevance of ⊆' and compare sup== : {C C1 : HOD } → C ≡ C1 → {c : C ⊆' A } {c1 : C1 ⊆' A } → {t : IsTotalOrderSet C } {t1 : IsTotalOrderSet C1 } → SUP.sup ( supP C c t ) ≡ SUP.sup ( supP C1 c1 t1 ) - z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ - z01 {a} {b} A∋a A∋b = <-irr + <-irr0 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ + <-irr0 {a} {b} A∋a A∋b = <-irr z07 : {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) s : HOD @@ -333,9 +331,9 @@ --- --- the maximum chain has fix point of any ≤-monotonic function --- - z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (subst (λ k → odef A k ) &iso as ) f mf supO (& A) ) + fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (subst (λ k → odef A k ) &iso as ) f mf supO (& A) ) → f (& (SUP.sup (sp0 f mf zc ))) ≡ & (SUP.sup (sp0 f mf zc )) - z03 f mf zc = z14 where + fixpoint f mf zc = z14 where chain = ZChain.chain zc sp1 = sp0 f mf zc z10 : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc (& A) → (ab : odef A b ) @@ -354,9 +352,9 @@ ... | case1 eq = ⊥-elim ( ne (cong (&) eq) ) ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt z19 : IsSup A chain {& (SUP.sup sp1)} (SUP.A∋maximal sp1) - z19 = record { chain = & chain ; chain⊆B = λ z → subst (λ k → odef k _ ) *iso z ; x<sup = z20 } where - z20 : {y : Ordinal} → odef (* (& chain)) y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1)) - z20 {y} zy with SUP.x<sup sp1 (subst₂ (λ j k → odef j k ) *iso (sym &iso) zy) + z19 = record { x<sup = z20 } where + z20 : {y : Ordinal} → odef chain y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1)) + z20 {y} zy with SUP.x<sup sp1 (subst (λ k → odef chain k ) (sym &iso) zy) ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p )) ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p ) -- λ {y} zy → subst (λ k → (y ≡ & k ) ∨ (y << & k)) ? (SUP.x<sup sp1 ? ) } @@ -378,14 +376,14 @@ -- ZChain contradicts ¬ Maximal -- - -- ZChain forces fix point on any ≤-monotonic function (z03) + -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (subst (λ k → odef A k ) &iso as ) (cf nmx) (cf-is-≤-monotonic nmx) supO (& A)) → ⊥ - z04 nmx zc = z01 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) - (proj1 (is-cf nmx (SUP.A∋maximal sp1)))) - (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) - (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where + z04 nmx zc = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1)))) + (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) + (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) -- x ≡ f x ̄ + (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where -- x < f x sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc c = & (SUP.sup sp1) @@ -430,14 +428,15 @@ zc9 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc17 } -- no extention ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) - ... | case1 is-sup = -- previous ordinal is a sup of a smaller ZChain - record { chain = schain ; chain⊆A = s⊆A ; f-total = scmp ; f-next = scnext - ; initial = scinit ; f-immediate = simm ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax } where -- x is sup - -- sup0 = supP ( ZChain.chain zc0 ) (ZChain.chain⊆A zc0 ) (ZChain.f-total zc0) - -- sp = SUP.sup sup0 - -- x=sup : IsSup A (ZChain.chain zc0) {& (* x)} ax → x ≡ & sp -- sup is not minimum, so this may wrong + ... | case1 is-sup = -- x is a sup of zc0 + record { chain = schain ; chain⊆A = s⊆A ; f-total = scmp ; f-next = scnext + ; initial = scinit ; f-immediate = simm ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax } where sup0 : SUP A (ZChain.chain zc0) - sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = {!!} } + sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where + x21 : {y : HOD} → ZChain.chain zc0 ∋ y → (y ≡ * x) ∨ (y < * x) + x21 {y} zy with IsSup.x<sup is-sup zy + ... | case1 y=x = case1 ( subst₂ (λ j k → j ≡ * k ) *iso &iso ( cong (*) y=x) ) + ... | case2 y<x = case2 (subst₂ (λ j k → j < * k ) *iso &iso y<x ) sp : HOD sp = SUP.sup sup0 x=sup : x ≡ & sp @@ -507,24 +506,27 @@ ... | case2 sp<a | case1 b=sp = <-irr (case2 (subst ( λ k → k < * a ) (trans *iso (sym b=sp)) sp<a )) (proj1 p ) ... | case2 sp<a | case2 b<sp = <-irr (case2 (ptrans b<sp (subst (λ k → k < * a) *iso sp<a ))) (proj1 p ) simm {a} {b} (case2 sa) (case2 sb) p = fcn-imm {A} (& sp) {a} {b} f mf sa sb p - s-ismax : {a b : Ordinal} → odef schain a → b o< osuc x → (ab : odef A b) → - HasPrev A schain ab f ∨ IsSup A schain ab + s-ismax : {a b : Ordinal} → odef schain a → b o< osuc x → (ab : odef A b) + → HasPrev A schain ab f ∨ IsSup A schain ab → * a < * b → odef schain b - s-ismax {a} {b} (case1 za) b<ox ab P a<b with osuc-≡< b<ox | ODC.p∨¬p O (HasPrev A schain ab f)-- b is some previous - ... | case1 b=x | _ = case2 (subst (λ k → FClosure A f (& sp) k ) (sym (trans b=x x=sup )) (init (SUP.A∋maximal sup0) )) - ... | case2 b<x | case1 p = z21 p where + s-ismax {a} {b} sa b<ox ab p a<b with osuc-≡< b<ox -- b is x? + ... | case1 b=x = case2 (subst (λ k → FClosure A f (& sp) k ) (sym (trans b=x x=sup )) (init (SUP.A∋maximal sup0) )) + s-ismax {a} {b} (case1 za) b<ox ab (case1 p) a<b | case2 b<x = z21 p where -- has previous z21 : HasPrev A schain ab f → odef schain b z21 record { y = y ; ay = (case1 zy) ; x=fy = x=fy } = case1 (ZChain.is-max zc0 za (zc0-b<x b b<x) ab (case1 record { y = y ; ay = zy ; x=fy = x=fy }) a<b ) z21 record { y = y ; ay = (case2 sy) ; x=fy = x=fy } = subst (λ k → odef schain k) (sym x=fy) (case2 (fsuc y sy) ) - s-ismax {a} {b} (case1 za) b<ox ab (case1 p) a<b | case2 b<x | case2 ¬pr = ⊥-elim ( ¬pr p ) - s-ismax {a} {b} (case1 za) b<ox ab (case2 p) a<b | case2 b<x | case2 ¬pr = case1 (ZChain.is-max zc0 za (zc0-b<x b b<x) ab (case2 z22) a<b ) where - -- cahin of IsSup A schain ab may larger than chain of zc0 if it has a previous but it is not - z23 : * (IsSup.chain p) ⊆' ZChain.chain zc0 + s-ismax {a} {b} (case1 za) b<ox ab (case2 p) a<b | case2 b<x = case1 (ZChain.is-max zc0 za (zc0-b<x b b<x) ab (case2 z22) a<b ) where -- previous sup + z22 : IsSup A (ZChain.chain zc0) ab + z22 = record { x<sup = λ {y} zy → IsSup.x<sup p (case1 zy ) } + s-ismax {a} {b} (case2 sa) b<ox ab (case1 p) a<b | case2 b<x with HasPrev.ay p + ... | case1 zy = case1 (subst (λ k → odef chain k ) (sym (HasPrev.x=fy p)) (ZChain.f-next zc0 zy )) -- in previous closure of f + ... | case2 sy = case2 (subst (λ k → FClosure A f (& (* x)) k ) (sym (HasPrev.x=fy p)) (fsuc (HasPrev.y p) sy )) -- in current closure of f + s-ismax {a} {b} (case2 sa) b<ox ab (case2 p) a<b | case2 b<x = {!!} where -- closure of f cannot be a sup + z24 : IsSup A schain ab → IsSup A (ZChain.chain zc0) ab + z24 p = record { x<sup = λ {y} zy → IsSup.x<sup p (case1 zy ) } + z23 : FClosure A f (& (* x)) a → ¬ ( IsSup A schain ab ) z23 = {!!} - z22 : IsSup A (ZChain.chain zc0) ab - z22 = record { chain = IsSup.chain p ; chain⊆B = z23 ; x<sup = {!!} } - s-ismax {a} {b} (case2 sa) b<x ab p a<b = {!!} ... | case2 ¬x=sup = -- x is not f y' nor sup of former ZChain from y record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = z18 } where -- no extention @@ -535,8 +537,8 @@ ... | case2 lt = ZChain.is-max zc0 za (zc0-b<x b lt) ab p a<b ... | case1 b=x with p ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) - ... | case2 b=sup = ⊥-elim ( ¬x=sup record { chain = IsSup.chain b=sup ; chain⊆B = IsSup.chain⊆B b=sup - ; x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) + ... | case2 b=sup = ⊥-elim ( ¬x=sup record { + x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) ... | no ¬ox = {!!} where --- limit ordinal case record UZFChain (z : Ordinal) : Set n where -- Union of ZFChain from y which has maximality o< x field