Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1206:2c7fb857f144
...
author | kono |
---|---|
date | Fri, 03 Mar 2023 12:55:34 +0800 |
parents | 83ac320583f8 |
children | 56d501cf0318 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 25 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Fri Mar 03 10:42:58 2023 +0800 +++ b/src/Tychonoff.agda Fri Mar 03 12:55:34 2023 +0800 @@ -160,28 +160,37 @@ ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp)) ... | tri≈ ¬a 0=X ¬c = o∅ ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) - uf02 : {X v : Ordinal} → (0<X : o∅ o< X) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) - → Neighbor TP (limit CSX fp) v → * v ⊆ filter ( mf CSX fp ) - uf02 {X} {v} 0<X CSX fp nei {x} vx with trio< o∅ X - ... | tri< 0<X ¬b ¬c = UFLP.is-limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp)) nei vx - ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬a 0<X ) - ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) -- -- the limit is an limit of entire elements of X -- uf01 : {X : Ordinal} (CSX : * X ⊆ CS TP) (fp : fip {X} CSX) {x : Ordinal} → odef (* X) x → odef (* x) (limit CSX fp) uf01 {X} CSX fp {x} xx with trio< o∅ X - ... | tri< 0<X ¬b ¬c = uf02 0<X CSX fp uf03 uf05 where - uf04 : Ordinal - uf04 = ? - uf06 : Ordinal - uf06 = ? - uf05 : odef (* uf04) uf06 - uf05 = ? - uf03 : Neighbor TP (limit CSX fp) uf04 - uf03 = record { u = ? ; ou = ? ; ux = ? ; v⊆P = ? ; u⊆v = ? } + ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬a (subst (λ k → o∅ o< k) &iso ( ∈∅< xx ))) - ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + ... | tri< 0<X ¬b ¬c with ∨L\X {P} {* x} {UFLP.limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp))} + (UFLP.P∋limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp))) + ... | case1 lt = lt -- odef (* x) y + ... | case2 nlxy = ⊥-elim (MaximumFilter.proper (maxf CSX fp) uf11 ) where + y = UFLP.limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp)) + uf10 : odef (P \ * x ) y + uf10 = nlxy + uf03 : Neighbor TP y (& (P \ * x )) + uf03 = record { u = _ ; ou = P\CS=OS TP (CSX (subst (λ k → odef (* X) k ) (sym &iso) xx)) + ; ux = subst (λ k → odef k y) (sym *iso) uf10 + ; v⊆P = λ {z} xz → proj1 (subst(λ k → odef k z) *iso xz ) + ; u⊆v = λ x → x } + uf05 : odef (filter (MaximumFilter.mf (maxf CSX fp))) x + uf05 = MaximumFilter.F⊆mf (maxf CSX fp) record { b = & (* x , * x) + ; b⊆X = ? ; sb = gi ? ; u⊆P = ? ; x⊆u = λ x → x } + uf06 : odef (filter (MaximumFilter.mf (maxf CSX fp))) (& (P \ * x )) + uf06 = UFLP.is-limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp)) uf03 (subst (λ k → odef k y) (sym *iso) uf10) + uf13 : & ((* x) ∩ (P \ * x )) ≡ o∅ + uf13 = ? + uf12 : odef (Power P) (& ((* x) ∩ (P \ * x ))) + uf12 z pz = ? + uf11 : filter (MaximumFilter.mf (maxf CSX fp)) ∋ od∅ + uf11 = subst (λ k → odef (filter (MaximumFilter.mf (maxf CSX fp))) k ) uf13 + ( filter2 (MaximumFilter.mf (maxf CSX fp)) uf05 uf06 uf12 ) FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF