Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1388:2e53a8e6fa5f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 25 Jun 2023 18:32:07 +0900 |
parents | 003424a36fed |
children | 242bba9c82bf |
files | src/cardinal.agda |
diffstat | 1 files changed, 33 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sun Jun 25 15:58:16 2023 +0900 +++ b/src/cardinal.agda Sun Jun 25 18:32:07 2023 +0900 @@ -102,27 +102,49 @@ open Data.Nat +Injection-⊆ : {a b c : Ordinal } → * c ⊆ * a → Injection a b → Injection c b +Injection-⊆ = ? + Bernstein1 : {a b : Ordinal } → a o< b → Injection a b ∧ Injection b a → Injection (b - a) b ∧ Injection b (b - a) Bernstein1 {a} {b} a<b ⟪ f @ record { i→ = fab ; iB = b∋fab ; inject = fab-inject } , g @ record { i→ = fba ; iB = a∋fba ; inject = fba-inject } ⟫ = ⟪ record { i→ = f0 ; iB = b∋f0 ; inject = f0-inject } , record { i→ = f1 ; iB = b∋f1 ; inject = f1-inject } ⟫ where - C : ℕ → HOD - gf : (i : ℕ) → Injection (& (C i)) a - gf 0 = record { i→ = λ x cx → fba x ? ; iB = ? ; inject = ? } - gf (suc i) = record { i→ = be00 ; iB = ? ; inject = ? } where - be00 : (x : Ordinal) → odef (* (& (C (suc i)))) x → Ordinal - be00 x lt with subst (λ k → odef k x) *iso lt | inspect C (suc i) - ... | t | record { eq = eq1 } = ? - C 0 = (* a) \ Image g - C (suc i) = Image {& (C i)} {a} (gf i) + gf : Injection a a + gf = record { i→ = λ x ax → fba (fab x ax) (b∋fab x ax) ; iB = λ x ax → a∋fba _ (b∋fab x ax) + ; inject = λ x y ax ay eq → fab-inject _ _ ax ay ( fba-inject _ _ (b∋fab _ ax) (b∋fab _ ay) eq) } + + data gfImage : (i : ℕ) (x : Ordinal) → Set n where + a-g : {x : Ordinal} → (ax : odef (* a) x ) → (¬ib : ¬ ( IsImage b a g x )) → gfImage 0 x + next-gf : {x y : Ordinal} → {i : ℕ} → (gfiy : gfImage i y )→ (ix : IsImage a a gf x) → gfImage (suc i) x + + a∋gfImage : (i : ℕ) → {x : Ordinal } → gfImage i x → odef (* a) x + a∋gfImage 0 {x} (a-g ax ¬ib) = ax + a∋gfImage (suc i) {x} (next-gf lt record { y = y ; ay = ay ; x=fy = x=fy }) = subst (λ k → odef (* a) k ) (sym x=fy) (a∋fba _ (b∋fab y ay) ) + + C : ℕ → HOD -- Image {& (C i)} {a} (gf i) does not work + C i = record { od = record { def = gfImage i } ; odmax = & (* a) ; <odmax = λ lt → odef< (a∋gfImage i lt) } record CN (x : Ordinal) : Set n where field i : ℕ - cn=x : & (C i) ≡ x + gfix : gfImage i x UC : HOD - UC = record { od = record { def = λ x → CN x } ; odmax = a ; <odmax = ? } + UC = record { od = record { def = λ x → CN x } ; odmax = & (* a) ; <odmax = λ lt → odef< (a∋gfImage (CN.i lt) (CN.gfix lt)) } + + -- UC ⊆ * a + -- f : UC → Image f UC is injection + -- g : Image f UC → UC is injection + + UC⊆a : * (& UC) ⊆ * a + UC⊆a {x} lt with subst (λ k → odef k x) *iso lt + ... | t = ? + + fU : Injection (& UC) (& (Image {& UC} {b} (Injection-⊆ UC⊆a f) )) + fU = ? + + gU : Injection (& (Image {& UC} {b} (Injection-⊆ UC⊆a f))) (& UC) + gU = ? -- Injection (b - a) b f0 : (x : Ordinal) → odef (* (b - a)) x → Ordinal