Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1126:3091ac71a999
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 10 Jan 2023 03:00:04 +0900 |
parents | edef8810a023 |
children | c4f4868a8cdd |
files | src/ODUtil.agda src/filter.agda |
diffstat | 2 files changed, 21 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODUtil.agda Tue Jan 10 02:19:08 2023 +0900 +++ b/src/ODUtil.agda Tue Jan 10 03:00:04 2023 +0900 @@ -71,6 +71,9 @@ trans-⊆ : { A B C : HOD} → A ⊆ B → B ⊆ C → A ⊆ C trans-⊆ A⊆B B⊆C ab = B⊆C (A⊆B ab) +trans-⊂ : { A B C : HOD} → A ⊂ B → B ⊂ C → A ⊂ C +trans-⊂ ⟪ A<B , A⊆B ⟫ ⟪ B<C , B⊆C ⟫ = ⟪ ordtrans A<B B<C , (λ ab → B⊆C (A⊆B ab)) ⟫ + refl-⊆ : {A : HOD} → A ⊆ A refl-⊆ x = x
--- a/src/filter.agda Tue Jan 10 02:19:08 2023 +0900 +++ b/src/filter.agda Tue Jan 10 03:00:04 2023 +0900 @@ -216,7 +216,7 @@ Ly = subst (λ k → odef L k) (sym &iso) (f⊆L mf mfy) mu08 : L ∋ y+q-r mu08 = CUP Ly (NEG Lq (subst (λ k → odef L k) - (trans (cong (λ k → & (* y ∪ k)) (sym *iso)) (sym x=y∪p) ) (CUP Ly Lp )) ) where + (trans (cong (λ k → & (* y ∪ k)) (sym *iso)) (sym x=y∪p) ) (CUP Ly Lp )) ) mu09 : * y ⊆ y+q-r mu09 {x} yx = case1 yx mu07 : filter mf ∋ y+q-r @@ -296,21 +296,31 @@ f0 = subst (λ k → odef (filter F) k ) (trans (cong (&) ∩-comm) (cong (&) [a-b]∩b=0 ) ) ( filter2 F F∋p F∋-p ( CAP L∋p L∋-p) ) import zorn -open zorn O _⊆_ + +open import Relation.Binary + +PO : IsStrictPartialOrder _≡_ _⊂_ +PO = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } + ; trans = λ {a} {b} {c} → trans-⊂ {a} {b} {c} + ; irrefl = λ x=y x<y → ? + ; <-resp-≈ = record { fst = λ {x} {y} {y1} y=y1 xy1 → ? ; snd = λ {x} {x1} {y} x=x1 x1y → ? } } + +open zorn O _⊂_ PO open import Relation.Binary.Structures +SUP⊆ : (P B : HOD) → B ⊆ P → IsTotalOrderSet B → SUP P B +SUP⊆ P B B⊆P OB = record { sup = Union B ; isSUP = record { ax = ? ; x≤sup = ? } } + MaximumSubset : {L P : HOD} → o∅ o< & L → o∅ o< & P → P ⊆ L - → (PO : IsStrictPartialOrder _≡_ _⊆_ ) - → ( (B : HOD) → B ⊆ P → IsTotalOrderSet PO B → SUP PO P B ) - → Maximal PO P -MaximumSubset {L} {P} 0<L 0<P P⊆L PO C = Zorn-lemma PO 0<P {!!} + → Maximal P +MaximumSubset {L} {P} 0<L 0<P P⊆L = Zorn-lemma 0<P (SUP⊆ P) MaximumFilterExist : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP MaximumFilterExist {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = {!!} ; proper = {!!} ; is-maximum = {!!} } where - mf01 : Maximal {!!} {!!} - mf01 = MaximumSubset 0<L {!!} {!!} {!!} {!!} + mf01 : Maximal {!!} + mf01 = MaximumSubset 0<L {!!} {!!}