Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 368:30de2d9b93c1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 Jul 2020 03:24:39 +0900 |
parents | f74681db63c7 |
children | 17adeeee0c2a |
files | OPair.agda filter.agda |
diffstat | 2 files changed, 36 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/OPair.agda Sun Jul 19 00:26:55 2020 +0900 +++ b/OPair.agda Sun Jul 19 03:24:39 2020 +0900 @@ -135,24 +135,25 @@ p-pi2 : { x y : HOD } → (p : def ZFProduct (od→ord < x , y >) ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) -ω-pair : {x y : HOD} → infinite ∋ x → infinite ∋ y → od→ord < x , y > o< osuc (next o∅) -ω-pair {x} {y} lx ly with trio< (od→ord x) (od→ord y) -ω-pair {x} {y} lx ly | tri≈ ¬a b ¬c = {!!} -ω-pair {x} {y} lx ly | tri< a ¬b ¬c = {!!} -ω-pair {x} {y} lx ly | tri> ¬a ¬b c = {!!} --- ω-pair {x} {y} lx ly = begin --- od→ord < x , y > --- <⟨ ho< ⟩ --- next (omax (od→ord (x , x)) (od→ord (x , y))) --- ≤⟨ {!!} ⟩ --- next (omax (od→ord (x , x)) (od→ord (x , y))) --- ≡⟨ cong (λ k → next k ) (sym (omax< _ _ {!!} )) ⟩ --- next (osuc (od→ord (x , y))) --- ≤⟨ {!!} ⟩ --- od→ord < ord→od (next o∅) , ord→od (next o∅) > --- ≤⟨ {!!} ⟩ --- next o∅ --- ∎ where open o≤-Reasoning O +ω-pair : {x y : HOD} → infinite ∋ x → infinite ∋ y → od→ord < x , y > o< next o∅ +ω-pair {x} {y} lx ly = lemma where + lemma1 : od→ord x o< od→ord y → od→ord ( x , x ) o< od→ord ( x , y ) + lemma1 = {!!} + lemma0 : od→ord x o< od→ord y → od→ord < x , y > o< osuc (next (od→ord (x , y))) + lemma0 x<y = begin + od→ord < x , y > + <⟨ ho< ⟩ + next (omax (od→ord (x , x)) (od→ord (x , y))) + ≡⟨ cong (λ k → next k ) (sym (omax< _ _ (lemma1 x<y))) ⟩ + next (osuc (od→ord (x , y))) + ≡⟨ sym (nexto≡) ⟩ + next (od→ord (x , y)) + ∎ where open o≤-Reasoning O + lemma : od→ord < x , y > o< next o∅ + lemma with trio< (od→ord x) (od→ord y) + lemma | tri< a ¬b ¬c = {!!} + lemma | tri≈ ¬a b ¬c = next< {!!} {!!} + lemma | tri> ¬a ¬b c = {!!} _⊗_ : (A B : HOD) → HOD A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) ))
--- a/filter.agda Sun Jul 19 00:26:55 2020 +0900 +++ b/filter.agda Sun Jul 19 03:24:39 2020 +0900 @@ -124,10 +124,10 @@ record Dense (P : HOD ) : Set (suc n) where field dense : HOD - incl : dense ⊆ P + incl : dense ⊆ Power P dense-f : HOD → HOD - dense-d : { p : HOD} → P ∋ p → dense ∋ dense-f p - dense-p : { p : HOD} → P ∋ p → p ⊆ (dense-f p) + dense-d : { p : HOD} → p ⊆ P → dense ∋ dense-f p + dense-p : { p : HOD} → p ⊆ P → p ⊆ (dense-f p) record Ideal ( L : HOD ) : Set (suc n) where field @@ -184,8 +184,20 @@ ... | h1 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma {i} {1} {x}) ... | he {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) x<nx -HODω2-Filter : Filter HODω2 -HODω2-Filter = record { +data Two : Set n where + i0 : Two + i1 : Two + +record ω2r : Set n where + field + func2 : Nat → Two + ω2 : {!!} + +ω→2 : HOD +ω→2 = Replace infinite (λ x → < x , {!!} > ) + +G : (Nat → Two) → Filter HODω2 +G f = record { filter = {!!} ; f⊆PL = {!!} ; filter1 = {!!} @@ -202,10 +214,6 @@ -- the set of finite partial functions from ω to 2 -data Two : Set n where - i0 : Two - i1 : Two - Hω2f : Set (suc n) Hω2f = (Nat → Set n) → Two