Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 20:31626f36cd94
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 16 May 2019 16:08:34 +0900 |
parents | 47995eb521d4 |
children | 6d9fdd1dfa79 |
files | constructible-set.agda |
diffstat | 1 files changed, 16 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Thu May 16 11:40:18 2019 +0900 +++ b/constructible-set.agda Thu May 16 16:08:34 2019 +0900 @@ -129,13 +129,17 @@ open ConstructibleSet -_∋_ : (ConstructibleSet ) → (ConstructibleSet ) → Set n -a ∋ x = (α a ≡ α x) ∨ ( α x o< α a ) +_∋_ : (ConstructibleSet ) → (ConstructibleSet ) → Set (suc n) +a ∋ x = ((α a ≡ α x) ∨ ( α x o< α a )) + ∧ constructible a ( α x ) + -- transitiveness : (a b c : ConstructibleSet ) → a ∋ b → b ∋ c → a ∋ c -- transitiveness a b c a∋b b∋c with constructible a c∋ constructible b | constructible b c∋ constructible c -- ... | t1 | t2 = {!!} +open import Data.Unit + ConstructibleSet→ZF : ZF {suc (suc n)} {suc (suc n)} ConstructibleSet→ZF = record { ZFSet = ConstructibleSet @@ -145,14 +149,19 @@ ; _,_ = _,_ ; Union = Union ; Power = {!!} - ; Select = {!!} - ; Replace = {!!} + ; Select = Select + ; Replace = Replace ; infinite = {!!} ; isZF = {!!} } where - Select : (X : ConstructibleSet) → (ConstructibleSet → Set (suc n)) → ConstructibleSet - Select X ψ = record { α = α X ; constructible = λ x → ( ψ (record { α = x ; constructible = λ x → constructible X x } ) ) } + conv : (ConstructibleSet → Set (suc (suc n))) → ConstructibleSet → Set (suc n) + conv ψ x with ψ x + ... | t = Lift ( suc n ) ⊤ + Select : (X : ConstructibleSet) → (ConstructibleSet → Set (suc (suc n))) → ConstructibleSet + Select X ψ = record { α = α X ; constructible = λ x → (conv ψ) (record { α = x ; constructible = λ x → constructible X x } ) } + Replace : (X : ConstructibleSet) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet + Replace X ψ = record { α = α X ; constructible = λ x → {!!} } _,_ : ConstructibleSet → ConstructibleSet → ConstructibleSet - a , b = Select {!!} {!!} + a , b = record { α = maxα (α a) (α b) ; constructible = λ x → {!!} } Union : ConstructibleSet → ConstructibleSet Union a = {!!}