Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 45:33860eb44e47
od∅' {n} = ord→od (o∅ {n})
does not work
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 May 2019 04:58:38 +0900 (2019-05-24) |
parents | fcac01485f32 |
children | e584686a1307 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 18 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat May 25 04:12:30 2019 +0900 +++ b/ordinal-definable.agda Sat May 25 04:58:38 2019 +0900 @@ -27,13 +27,9 @@ open Ordinal postulate - od→lv : {n : Level} → OD {n} → Nat - od→d : {n : Level} → (x : OD {n}) → OrdinalD {n} (od→lv x ) + od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} -od→ord : {n : Level} → OD {n} → Ordinal {n} -od→ord x = record { lv = od→lv x ; ord = od→d x } - _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) @@ -68,6 +64,7 @@ od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } + postulate c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y @@ -118,6 +115,19 @@ lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) lemma0 dz = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) +od∅' : {n : Level} → OD {n} +od∅' {n} = ord→od (o∅ {n}) + +∅1' : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅' {n} ) +∅1' {n} x xc<o with c<→o< {n} {x} {ord→od (o∅ {n})} xc<o +∅1' {n} x xc<o | case1 x₁ = {!!} +∅1' {n} x xc<o | case2 x₁ = {!!} + where + lemma : ( ox : Ordinal {n} ) → ox o< o∅ {n} → ⊥ + lemma ox (case1 ()) + lemma ox (case2 ()) + + record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where field mino : Ordinal {n} @@ -169,14 +179,11 @@ -- ∅77 {n} x lt = {!!} where ∅7' : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} -∅7' {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) where +∅7' {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) open import Relation.Binary.HeterogeneousEquality using (_≅_;refl) -∅7'' : {n : Level} → ( x : OD {n} ) → od→lv {n} x ≡ Zero → od→d {n} x ≅ Φ {n} Zero → x == od∅ {n} -∅7'' {n} x eq eq1 = {!!} - ∅7 : {n : Level} → ( x : OD {n} ) → od→ord x ≡ o∅ {n} → x == od∅ {n} ∅7 {n} x eq = record { eq→ = e1 ; eq← = e2 } where e0 : {y : Ordinal {n}} → y o< o∅ {n} → def od∅ y @@ -189,6 +196,8 @@ e2 : {y : Ordinal {n}} → def od∅ y → def x y e2 {y} (lift ()) +open _∧_ + ∅9 : {n : Level} → (x : OD {n} ) → ¬ x == od∅ → o∅ o< od→ord x ∅9 x not = ∅5 ( od→ord x) lemma where lemma : ¬ od→ord x ≡ o∅