Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 802:358c33d3a2bd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 09 Aug 2022 08:43:03 +0900 |
parents | 8373b130ba41 |
children | 7c6612b753b9 |
files | src/zorn.agda |
diffstat | 1 files changed, 29 insertions(+), 44 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Aug 08 14:35:12 2022 +0900 +++ b/src/zorn.agda Tue Aug 09 08:43:03 2022 +0900 @@ -718,46 +718,19 @@ no-extension : ¬ sp1 ≡ x → ZChain A f mf ay x no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; initial = {!!} ; chain∋init = {!!} ; sup=u = {!!} ; supf-is-sup = {!!} ; csupf = {!!} - ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} } where - UnionCF⊆ : UnionCF A f mf ay supf1 x ⊆' UnionCF A f mf ay supf0 x - UnionCF⊆ ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ - UnionCF⊆ ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = o1 ; supu=u = su=u1 } fc ⟫ with trio< u px - ... | tri< a ¬b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = order0 ; supu=u = {!!} } fc ⟫ where - order0 : {s z1 : Ordinal} → s o< u → FClosure A f (supf0 s) z1 - → (z1 ≡ supf0 u) ∨ (z1 << supf0 u) - order0 {s} {z1} ss<su fc with trio< s px | inspect supf1 s - ... | tri< a ¬b ¬c | record {eq = eq1} = o1 {s} {z1} {!!} - (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) - ... | tri≈ ¬a b ¬c | record {eq = eq1} = o1 {s} {z1} {!!} - (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) - ... | tri> ¬a ¬b c | record {eq = eq1} = {!!} - ... | tri≈ ¬a b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = order0 ; supu=u = {!!}} fc ⟫ where - order0 : {s z1 : Ordinal} → s o< u → FClosure A f (supf0 s) z1 - → (z1 ≡ supf0 u) ∨ (z1 << supf0 u) - order0 {s} {z1} ss<su fc with trio< s px | inspect supf1 s - ... | tri< a ¬b ¬c | record {eq = eq1} = o1 {s} {z1} {!!} - (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) - ... | tri≈ ¬a b ¬c | record {eq = eq1} = o1 {s} {z1} {!!} - (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) - ... | tri> ¬a ¬b px<s | record {eq = eq1} = ⊥-elim ( ¬sp=x (subst (λ k → sp1 ≡ k ) u=x {!!} )) where - s≤u : s o≤ u - s≤u = {!!} - u=x : u ≡ x - u=x with trio< u x - ... | tri< a ¬b ¬c = {!!} - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b c = {!!} - ... | tri> ¬a ¬b c = ⊥-elim ( ¬sp=x (subst (λ k → sp1 ≡ k ) u=x su=u1 )) where - u=x : u ≡ x - u=x with trio< u x - ... | tri< a ¬b ¬c = {!!} - ... | tri≈ ¬a b ¬c = b - ... | tri> ¬a ¬b c = {!!} + ; chain⊆A = {!!} ; f-next = ? ; f-total = {!!} } where + UnionCF⊆ : {z : Ordinal } → z o≤ x → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay supf0 x + UnionCF⊆ {z} z≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ + UnionCF⊆ {z} z≤x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 ? ? (init ? ?) ⟫ + UnionCF⊆ {z} z≤x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ with + UnionCF⊆ {z} z≤x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ + ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ + ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) sup {z} z≤x with trio< z px - ... | tri< a ¬b ¬c = SUP⊆ {!!} (ZChain.sup zc (o<→≤ a)) - ... | tri≈ ¬a b ¬c = SUP⊆ {!!} (ZChain.sup zc (o≤-refl0 b)) - ... | tri> ¬a ¬b c = SUP⊆ {!!} sup1 + ... | tri< a ¬b ¬c = SUP⊆ (UnionCF⊆ ? ) (ZChain.sup zc ? ) + ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCF⊆ ? ) (ZChain.sup zc ? ) + ... | tri> ¬a ¬b c = SUP⊆ (λ lt → chain-mono f mf ay _ ? (UnionCF⊆ ? lt )) sup1 zc4 : ZChain A f mf ay x zc4 with ODC.∋-p O A (* x) @@ -844,18 +817,30 @@ (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u≤x is-sup (fsuc _ fc)) ⟫ no-extension : ¬ spu ≡ x → ZChain A f mf ay x - no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = {!!} + no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = sup=u ; sup = sup ; supf-is-sup = sis ; csupf = csupf ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } where supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z - UnionCF⊆ : {u : Ordinal} → (a : u o< x ) → UnionCF A f mf ay supf1 x ⊆' UnionCF A f mf ay (supfu a) x - UnionCF⊆ = {!!} + UnionCF⊆ : {u : Ordinal} → (a : u o< x ) → UnionCF A f mf ay supf1 u ⊆' UnionCF A f mf ay (supfu a) x + UnionCF⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ + UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 ? ? (init ? ?) ⟫ + UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ with + UnionCF⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ + ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ + ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ + UnionCF0⊆ : {z : Ordinal} → (a : z o≤ x ) → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay psupf0 x + UnionCF0⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ + UnionCF0⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 ? ? (init ? ?) ⟫ + UnionCF0⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ with + UnionCF0⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ + ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ + ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) sup {z} z≤x with trio< z x - ... | tri< a ¬b ¬c = SUP⊆ {!!} (ZChain.sup (pzc z a) o≤-refl ) - ... | tri≈ ¬a b ¬c = SUP⊆ {!!} usup - ... | tri> ¬a ¬b c = SUP⊆ {!!} usup + ... | tri< a ¬b ¬c = SUP⊆ (UnionCF⊆ a) (ZChain.sup (pzc (osuc z) ?) ? ) + ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCF0⊆ ?) usup + ... | tri> ¬a ¬b c = SUP⊆ (UnionCF0⊆ ?) usup sis : {z : Ordinal} (x≤z : z o≤ x) → supf1 z ≡ & (SUP.sup (sup x≤z)) sis {z} z≤x with trio< z x ... | tri< a ¬b ¬c = {!!} where