Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 443:3681cac8d6a8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 09 Mar 2022 17:42:22 +0900 |
parents | 3fbcd11c2a35 |
children | 8c43e804581e |
files | src/OD.agda src/filter.agda src/generic-filter.agda |
diffstat | 3 files changed, 21 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Fri Mar 04 19:04:08 2022 +0900 +++ b/src/OD.agda Wed Mar 09 17:42:22 2022 +0900 @@ -96,9 +96,9 @@ * : Ordinal → HOD c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) - *iso : {x : HOD } → * ( & x ) ≡ x + *iso : {x : HOD } → * ( & x ) ≡ x -- should be (* ( & x )) == x &iso : {x : Ordinal } → & ( * x ) ≡ x - ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y + ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y -- should be & x ≡ & y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ -- possible order restriction @@ -217,6 +217,9 @@ ∅6 : { x : HOD } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) +∅7 : {x : HOD} → o∅ o< & x → ¬ ( od x == od od∅ ) +∅7 {x} lt eq = ¬x<0 (subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) lt ) + odef-iso : {A B : HOD } {x y : Ordinal } → x ≡ y → (odef A y → odef B y) → odef A x → odef B x odef-iso refl t = t
--- a/src/filter.agda Fri Mar 04 19:04:08 2022 +0900 +++ b/src/filter.agda Wed Mar 09 17:42:22 2022 +0900 @@ -120,6 +120,16 @@ lemma : (p : HOD) → p ⊆ L → filter P ∋ (p ∪ (L \ p)) lemma p p⊆L = subst (λ k → filter P ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L +----- +-- +-- if Filter not contains L, there is a ultra filter +-- +-- filter-lemma3 : {L : HOD} → (P : Filter L) → ¬ ( filter P ∋ L ) → ultra-filter P +-- filter-lemma3 {L} P ¬f∋L = record { +-- proper = {!!} +-- ; ultra = {!!} +-- } where + record Dense (P : HOD ) : Set (suc n) where field dense : HOD
--- a/src/generic-filter.agda Fri Mar 04 19:04:08 2022 +0900 +++ b/src/generic-filter.agda Wed Mar 09 17:42:22 2022 +0900 @@ -92,11 +92,13 @@ ... | yes _ = B P C i x lt ... | no _ with is-o∅ ( & (BR.b (B P C i x lt) ∩ A i P C ) ) ... | no ne = record { b = BR.b (B P C i x lt ) ∩ A i P C ; b>0 = ¬≡o∅< ne } -... | yes y = record { b = BR.b (B P C i x lt) \ (ODC.minimal O _ (b02 (b01 ? y ))) ; b>0 = {!!} } where +... | yes y = record { b = BR.b (B P C i x lt) \ (ODC.minimal O b03 (b02 (b01 (BR.b>0 (B P C i x lt)) y ))) ; b>0 = {!!} } where + b03 : HOD + b03 = BR.b (B P C i x lt) \ A i P C b02 : {x : HOD} → o∅ o< & x → ¬ ( x =h= od∅ ) - b02 = {!!} - b01 : {an bn : HOD} → o∅ o< & bn → &( an ∩ bn ) ≡ o∅ → o∅ o< &( bn \ an ) - b01 = {!!} + b02 = ∅7 + b01 : {an bn : HOD} → o∅ o< & bn → &( bn ∩ an ) ≡ o∅ → o∅ o< &( bn \ an ) + b01 {an} {bn} 0<b ba=0 = {!!} B⊆ : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : HOD) → (lt : o∅ o< & x) → BR.b (B P C (Suc i) x lt) ⊆ BR.b (B P C (Suc i) x lt)