Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 884:36a50c66a00d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Oct 2022 10:19:31 +0900 |
parents | b7fb839cdcd0 |
children | d1a850b5d8e4 |
files | src/zorn.agda |
diffstat | 1 files changed, 30 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Oct 01 19:34:04 2022 +0900 +++ b/src/zorn.agda Sun Oct 02 10:19:31 2022 +0900 @@ -891,23 +891,47 @@ ... | tri≈ ¬a b ¬c = px --- supf px ≡ px ... | tri> ¬a ¬b c = sp1 --- this may equal or larger then x, and sp1 ≡ supf x, is not included in UniofCF + apx : odef A px + apx = subst (λ k → odef A k ) (sym sfpx=px) ( ZChain.asupf zc ) + asupf1 : {z : Ordinal } → odef A (supf1 z ) asupf1 {z} with trio< z px ... | tri< a ¬b ¬c = ZChain.asupf zc ... | tri≈ ¬a b ¬c = subst (λ k → odef A k ) (trans (cong supf0 b) (sym sfpx=px)) ( ZChain.asupf zc ) ... | tri> ¬a ¬b c = MinSUP.asm sup1 - -- ch1x=pchainpx : UnionCF A f mf ay supf1 x ≡ pchainpx - -- ch1x=pchainpx = ? - - -- UnionCF A f mf ay supf0 x ⊆ UnionCF A f mf ay supf1 x - zc16 : {z : Ordinal } → z o≤ px → supf1 z ≡ supf0 z zc16 {z} z<px with trio< z px ... | tri< a ¬b ¬c = refl ... | tri≈ ¬a b ¬c = trans sfpx=px (cong supf0 (sym b)) ... | tri> ¬a ¬b c = ⊥-elim ( o≤> z<px c ) + ch1x=pchainpx : UnionCF A f mf ay supf1 x ≡ pchainpx + ch1x=pchainpx = ==→o≡ record { eq→ = zc11 ; eq← = zc12 } where + fcup : {u z : Ordinal } → FClosure A f (supf1 u) z → u o≤ px → FClosure A f (supf0 u) z + fcup {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (zc16 u≤px) fc + fcpu : {u z : Ordinal } → FClosure A f (supf0 u) z → u o≤ px → FClosure A f (supf1 u) z + fcpu {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sym (zc16 u≤px)) fc + zc11 : {z : Ordinal} → odef (UnionCF A f mf ay supf1 x) z → odef pchainpx z + zc11 {z} ⟪ az , ch-init fc ⟫ = case1 ⟪ az , ch-init fc ⟫ + zc11 {z} ⟪ az , ch-is-sup u u≤x is-sup fc ⟫ with trio< u px + ... | tri< a ¬b ¬c = case1 ⟪ az , ch-is-sup u a record {fcy<sup = zc13 ; order = ? ; supu=u = trans (sym (zc16 (o<→≤ a))) (ChainP.supu=u is-sup) } fc ⟫ where + zc13 : {z : Ordinal } → FClosure A f y z → (z ≡ supf0 u) ∨ ( z << supf0 u ) + zc13 {z} fc = subst (λ k → (z ≡ k) ∨ ( z << k )) (zc16 (o<→≤ a)) ( ChainP.fcy<sup is-sup fc ) + ... | tri≈ ¬a b ¬c = case2 fc + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → u o< k ) (sym (Oprev.oprev=x op)) u≤x ⟫ ) + zc12 : {z : Ordinal} → odef pchainpx z → odef (UnionCF A f mf ay supf1 x) z + zc12 {z} (case1 ⟪ az , ch-init fc ⟫ ) = ⟪ az , ch-init fc ⟫ + zc12 {z} (case1 ⟪ az , ch-is-sup u u<x is-sup fc ⟫ ) = ⟪ az , ch-is-sup u + (subst (λ k → u o< k) (Oprev.oprev=x op) (ordtrans u<x <-osuc )) + record {fcy<sup = zc13 ; order = ? ; supu=u = trans (zc16 (o<→≤ u<x)) (ChainP.supu=u is-sup) } (fcpu fc (o<→≤ u<x)) ⟫ where + zc13 : {z : Ordinal } → FClosure A f y z → (z ≡ supf1 u) ∨ ( z << supf1 u ) + zc13 {z} fc = subst (λ k → (z ≡ k) ∨ ( z << k )) (sym (zc16 (o<→≤ u<x))) ( ChainP.fcy<sup is-sup fc ) + zc12 {z} (case2 fc) = ⟪ A∋fc px f mf fc , ch-is-sup px (pxo<x op) record {fcy<sup = zc13 ; order = ? ; supu=u = trans (zc16 o≤-refl ) (sym sfpx=px) } + (subst (λ k → FClosure A f k z ) (trans sfpx=px (sym (zc16 o≤-refl ))) fc) ⟫ where + zc13 : {z : Ordinal } → FClosure A f y z → (z ≡ supf1 px ) ∨ ( z << supf1 px ) + zc13 {z} fc = subst (λ k → (z ≡ k) ∨ ( z << k )) (sym (zc16 o≤-refl)) ( ZChain.fcy<sup zc o≤-refl fc ) + record STMP {z : Ordinal} (z≤x : z o≤ x ) : Set (Level.suc n) where field tsup : MinSUP A (UnionCF A f mf ay supf1 z) @@ -922,7 +946,7 @@ ; x<sup = ? ; minsup = ? } ; tsup=sup = trans (zc16 (o≤-refl0 b)) (ZChain.supf-is-minsup zc (o≤-refl0 b)) } where m = ZChain.minsup zc (o≤-refl0 b) ... | tri> ¬a ¬b px<z = record { tsup = record { sup = sp1 ; asm = MinSUP.asm sup1 - ; x<sup = ? ; minsup = ? } ; tsup=sup = ? } where + ; x<sup = ? ; minsup = ? } ; tsup=sup = ? } supf-mono1 : {z w : Ordinal } → z o≤ w → supf1 z o≤ supf1 w supf-mono1 {z} {w} z≤w with trio< w px