Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1054:38148b08d85c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Dec 2022 22:59:10 +0900 |
parents | a281ad683577 |
children | 60211e5b1fe5 |
files | src/zorn.agda |
diffstat | 1 files changed, 29 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Dec 09 20:53:59 2022 +0900 +++ b/src/zorn.agda Fri Dec 09 22:59:10 2022 +0900 @@ -1241,23 +1241,46 @@ ... | tri< b<px ¬b ¬c = ZChain.order zc (o<→≤ b<px) (subst (λ k → k o< supf0 b) (sf1=sf0 (o<→≤ (ordtrans a<b b<px))) sa<sb) (fcup fc (o<→≤ (ordtrans a<b b<px))) ... | tri≈ ¬a b=px ¬c = IsMinSUP.x≤sup (ZChain.is-minsup zc (o≤-refl0 b=px)) z26 where + a≤x : a o≤ x + a≤x = o<→≤ (ordtrans ( subst (λ k → a o< k ) b=px a<b ) px<x ) z26 : odef ( UnionCF A f ay supf0 b ) w z26 with x<y∨y≤x (supf1 a) b - ... | case2 b≤sa = ⊥-elim ( o<¬≡ ( supfeq1 ? ? ( union-max1 ? ? (subst (λ k → supf1 a o< k) ? sa<sb) )) - (ordtrans<-≤ sa<sb (o≤-refl0 (sym (sf1=sf0 ?)) ))) + ... | case2 b≤sa = z27 where + z27 : odef (UnionCF A f ay supf0 b) w + z27 with osuc-≡< b≤sa + ... | case2 b<sa = ⊥-elim ( o<¬≡ ( supfeq1 a≤x b≤x + ( union-max1 x≤sa b≤x (subst (λ k → supf1 a o< k) (sym (sf1=sf0 (o≤-refl0 b=px))) sa<sb) )) + (ordtrans<-≤ sa<sb (o≤-refl0 (sym (sf1=sf0 (o≤-refl0 b=px))) ))) where + x≤sa : x o≤ supf1 a + x≤sa = subst (λ k → k o≤ supf1 a ) (trans (cong osuc b=px) (Oprev.oprev=x op)) (osucc b<sa ) + ... | case1 b=sa = z28 where + a<x : a o< x + a<x = ? + z28 : odef (UnionCF A f ay supf0 b) w + z28 with cfcs a<x ? ? fc + ... | ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ + ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u ? ? (fcup fc ?) ⟫ + -- px ≡ supf1 a ... | case1 sa<b with cfcs a<b b≤x sa<b fc ... | ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ - ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u ? ? ? ⟫ + ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u u<x (trans (sym (sf1=sf0 u≤px)) su=u) (fcup fc u≤px) ⟫ where + u≤px : u o≤ px + u≤px = o<→≤ ( subst (λ k → u o< k ) b=px u<x ) ... | tri> ¬a ¬b px<b with x<y∨y≤x (supf1 a) b ... | case1 sa<b = MinSUP.x≤sup sup1 (zc11 ( chain-mono f mf ay supf1 supf1-mono b≤x (cfcs a<b b≤x sa<b fc))) - ... | case2 b≤sa = ⊥-elim ( o<¬≡ ? sa<sb ) where -- x=b x o≤ sa UnionCF a ≡ UnionCF b → supf1 a ≡ supfb b → ⊥ + ... | case2 b≤sa = ⊥-elim ( o<¬≡ z27 sa<sb ) where -- x=b x o≤ sa UnionCF a ≡ UnionCF b → supf1 a ≡ supfb b → ⊥ b=x : b ≡ x b=x with trio< b x ... | tri< a ¬b ¬c = ⊥-elim ( ¬p<x<op ⟪ px<b , zc-b<x _ a ⟫ ) -- px o< b o< x ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim ( o≤> b≤x c ) -- x o< b ≤ x - z27 : supf1 a ≡ supf1 b - z27 = supfeq1 ? ? ( union-max1 ? ? sa<sb ) + a≤x : a o≤ x + a≤x = o<→≤ ( subst (λ k → a o< k ) b=x a<b ) + sf1b=sp1 : supf1 b ≡ sp1 + sf1b=sp1 = sf1=sp1 (subst (λ k → px o< k) (trans (Oprev.oprev=x op) (sym b=x)) <-osuc) + z27 : supf1 a ≡ sp1 + z27 = trans ( supfeq1 a≤x b≤x ( union-max1 (subst (λ k → k o≤ supf1 a) b=x b≤sa) + b≤x (subst (λ k → supf1 a o< k ) (sym sf1b=sp1) sa<sb ) ) ) sf1b=sp1 ... | no lim with trio< x o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )