changeset 1055:60211e5b1fe5

order (px case) done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 09 Dec 2022 23:27:05 +0900
parents 38148b08d85c
children 0dff7ab7a55f
files src/zorn.agda
diffstat 1 files changed, 8 insertions(+), 8 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Fri Dec 09 22:59:10 2022 +0900
+++ b/src/zorn.agda	Fri Dec 09 23:27:05 2022 +0900
@@ -1253,14 +1253,14 @@
                                        (ordtrans<-≤ sa<sb (o≤-refl0 (sym (sf1=sf0 (o≤-refl0 b=px))) ))) where
                                   x≤sa : x o≤ supf1 a
                                   x≤sa = subst (λ k → k o≤ supf1 a ) (trans (cong osuc b=px) (Oprev.oprev=x op)) (osucc b<sa )
-                              ... | case1 b=sa = z28 where
-                                  a<x : a o< x
-                                  a<x = ?
-                                  z28 : odef (UnionCF A f ay supf0 b) w
-                                  z28 with cfcs a<x ? ? fc  
-                                  ... | ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ 
-                                  ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u ? ? (fcup fc ?)  ⟫ 
-                                  -- px ≡ supf1 a
+                              ... | case1 b=sa = ⊥-elim (o<¬≡ sa=sb sa<sb)  where
+                                  sa=sb : supf1 a ≡ supf0 b
+                                  sa=sb = begin
+                                    supf1 a ≡⟨ sf1=sf0 a≤px ⟩
+                                    supf0 a ≡⟨ sym (ZChain.supf-idem zc a≤px (o≤-refl0 (sym (trans (sym b=px) (trans b=sa (sf1=sf0 a≤px) )))))  ⟩
+                                    supf0 (supf0 a) ≡⟨ cong supf0 (sym (sf1=sf0 a≤px )) ⟩
+                                    supf0 (supf1 a) ≡⟨ cong supf0 (sym b=sa) ⟩
+                                    supf0 b ∎ where open ≡-Reasoning
                           ... | case1 sa<b with cfcs a<b b≤x sa<b fc  
                           ... | ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ 
                           ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u u<x (trans (sym (sf1=sf0 u≤px)) su=u) (fcup fc u≤px)  ⟫ where