Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 937:3a511519bd10
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Oct 2022 19:11:19 +0900 |
parents | f160556a7c9a |
children | 93a49ffa9183 |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Oct 24 16:16:15 2022 +0900 +++ b/src/zorn.agda Mon Oct 24 19:11:19 2022 +0900 @@ -1415,6 +1415,7 @@ (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc (sp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc ) ss<sa ))) -- x ≡ f x ̄ (proj1 (cf-is-<-monotonic nmx c (SUP.as sp1 ))) where -- x < f x + supf = ZChain.supf zc msp1 : MinSUP A (ZChain.chain zc) msp1 = msp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc @@ -1438,9 +1439,7 @@ msup = ZChain.minsup zc (o<→≤ d<A) sd=ms : supf d ≡ MinSUP.sup ( ZChain.minsup zc (o<→≤ d<A) ) sd=ms = ZChain.supf-is-minsup zc (o<→≤ d<A) - -- z26 : {x : Ordinal } → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) x - -- → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) c) x ∨ odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc ) x - -- z26 = ? + is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd) is-sup = record { x<sup = z22 } where z23 : {z : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) z → (z ≡ MinSUP.sup spd) ∨ (z << MinSUP.sup spd) @@ -1451,19 +1450,17 @@ z22 {a} ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ? -- u<x : ZChain.supf zc u o< ZChain.supf zc d -- supf u o< spuf c → order + not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) d (cf nmx) not-hasprev hp = ? where y : Ordinal y = HasPrev.y hp z24 : y << d z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) - -- z26 : {x : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc ) x → (x ≡ d ) ∨ (x << d ) - -- z26 lt with MinSUP.x<sup spd (subst (λ k → odef _ k ) ? lt) - -- ... | case1 eq = ? - -- ... | case2 lt = ? - -- z25 : {x : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc ) x → (x ≡ y ) ∨ (x << y ) - -- z25 {x} (init au eq ) = ? -- sup c = x, cf y ≡ d, sup c =< d - -- z25 (fsuc x lt) = ? -- cf (sup c) + z25 : odef (ZChain.chain zc) (cf nmx d) + z25 = ZChain.f-next zc (subst (λ k → odef (ZChain.chain zc) k) (sym (HasPrev.x=fy hp)) + (ZChain.f-next zc + (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ d<A) ( HasPrev.ay hp )))) sd=d : supf d ≡ d sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫ @@ -1475,10 +1472,16 @@ d1 = MinSUP.sup spd z24 : (supf mc ≡ d1) ∨ ( supf mc << d1 ) z24 = MinSUP.x<sup spd (init asc refl) + z26 : odef (ZChain.chain zc) (supf mc) + z26 = ? + z28 : supf mc o< & A + z28 = z09 (ZChain.asupf zc) z25 : supf mc << d1 z25 with z24 ... | case2 lt = lt - ... | case1 eq = ? + ... | case1 eq = ? where + z27 : odef (ZChain.chain zc) (cf nmx d1) + z27 = ZChain.f-next zc (subst (λ k → odef (ZChain.chain zc) k ) eq (ZChain.csupf zc z28)) sc<sd : {mc d : Ordinal } → supf mc << supf d → supf mc o< supf d sc<sd {mc} {d} sc<<sd with osuc-≡< ( ZChain.supf-<= zc (case2 sc<<sd ) )