Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 22:3da2c00bd24d
..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 16 May 2019 17:20:45 +0900 |
parents | 6d9fdd1dfa79 |
children | 7293a151d949 |
files | constructible-set.agda |
diffstat | 1 files changed, 21 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Thu May 16 16:47:27 2019 +0900 +++ b/constructible-set.agda Thu May 16 17:20:45 2019 +0900 @@ -38,27 +38,6 @@ o∅ : Ordinal o∅ = record { lv = Zero ; ord = Φ } -TransFinite : ( ψ : Ordinal → Set n ) - → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) - → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ } ) ) - → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc x } ) ) - → ∀ (x : Ordinal) → ψ x -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ } = caseΦ lv -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc ord₁ } = caseOSuc lv ord₁ - ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ - -record SupR (ψ : Ordinal → Ordinal ) : Set n where - field - sup : Ordinal - smax : { x : Ordinal } → ψ x o< sup - -open SupR - -Sup : (ψ : Ordinal → Ordinal ) → SupR ψ -sup (Sup ψ) = {!!} -smax (Sup ψ) = {!!} - ≡→¬d< : {lv : Nat} → {x : OrdinalD lv } → x d< x → ⊥ ≡→¬d< {lx} {OSuc y} (s< t) = ≡→¬d< t @@ -145,6 +124,27 @@ } } +TransFinite : ( ψ : Ordinal → Set n ) + → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) + → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ } ) ) + → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc x } ) ) + → ∀ (x : Ordinal) → ψ x +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ } = caseΦ lv +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc ord₁ } = caseOSuc lv ord₁ + ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ + +record SupR (ψ : Ordinal → Ordinal ) : Set n where + field + sup : Ordinal + smax : { x : Ordinal } → ψ x o< sup + +open SupR + +Sup : (ψ : Ordinal → Ordinal ) → SupR ψ +sup (Sup ψ) = {!!} +smax (Sup ψ) = {!!} + -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' record ConstructibleSet : Set (suc (suc n)) where