Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 495:4203ba14fd53
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Apr 2022 10:38:15 +0900 |
parents | 45b19d35dc07 |
children | c03d80290855 |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 09 08:30:33 2022 +0900 +++ b/src/zorn.agda Sat Apr 09 10:38:15 2022 +0900 @@ -48,29 +48,33 @@ open Element IsPartialOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) -IsPartialOrderSet A _<_ = IsPartialOrder _≡A_ _≤A_ where - _≤A_ : (x y : Element A ) → Set (suc n) - x ≤A y = (elm x ≡ elm y) ∨ (elm x < elm y) +IsPartialOrderSet A _<_ = IsStrictPartialOrder _≡A_ _<A_ where + _<A_ : (x y : Element A ) → Set n + x <A y = elm x < elm y _≡A_ : (x y : Element A ) → Set (suc n) x ≡A y = elm x ≡ elm y open _==_ open _⊆_ -toA : { A B : HOD } → B ⊆ A → (x : Element B) → Element A -toA B⊆A x = record { elm = elm x ; is-elm = incl B⊆A (is-elm x) } +isA : { A B : HOD } → B ⊆ A → (x : Element B) → Element A +isA B⊆A x = record { elm = elm x ; is-elm = incl B⊆A (is-elm x) } ⊆-IsPartialOrderSet : { A B : HOD } → B ⊆ A → {_<_ : (x y : HOD) → Set n } → IsPartialOrderSet A _<_ → IsPartialOrderSet B _<_ ⊆-IsPartialOrderSet {A} {B} B⊆A {_<_} PA = record { - isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = λ eq → case1 eq ; trans = λ {x} {y} {z} → trans1 {x} {y} {z} } - ; antisym = λ {x} {y} → anti {x} {y} + isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = λ eq → case1 eq ; trans = λ {x} {y} {z} → trans1 {x} {y} {z} + ; irrefl = λ {x} {y} → irrefl1 {x} {y} ; trans = trans1 ; <-resp-≈ = resp0 } where - _≤B_ : (x y : Element B ) → Set (suc n) - x ≤B y = (elm x ≡ elm y) ∨ (elm x < elm y) - trans1 : {x y z : Element B} → x ≤B y → y ≤B z → x ≤B z - trans1 {x} {y} {z} x<y y<z = IsPreorder.trans (IsPartialOrder.isPreorder PA) {toA B⊆A x} {toA B⊆A y} {toA B⊆A z} x<y y<z - anti : {x y : Element B} → x ≤B y → y ≤B x → elm x ≡ elm y - anti {x} {y} x<y y<x = IsPartialOrder.antisym PA {toA B⊆A x} {toA B⊆A y} x<y y<x + _<B_ : (x y : Element B ) → Set n + x <B y = elm x < elm y + trans1 : {x y z : Element B} → x <B y → y <B z → x <B z + trans1 {x} {y} {z} x<y y<z = IsStrictPartialOrder.trans PA {isA B⊆A x} {isA B⊆A y} {isA B⊆A z} x<y y<z + irrefl1 : {x y : Element B} → elm x ≡ elm y → ¬ ( x <B y ) + irrefl1 {x} {y} x=y x<y = IsStrictPartialOrder.irrefl PA {isA B⊆A x} {isA B⊆A y} x=y x<y + open import Data.Product + resp0 : ({x y z : Element B} → elm y ≡ elm z → x <B y → x <B z) × ({x y z : Element B} → elm y ≡ elm z → y <B x → z <B x) + resp0 = Data.Product._,_ (λ {x} {y} {z} → proj₁ (IsStrictPartialOrder.<-resp-≈ PA) {isA B⊆A x } {isA B⊆A y }{isA B⊆A z }) + (λ {x} {y} {z} → proj₂ (IsStrictPartialOrder.<-resp-≈ PA) {isA B⊆A x } {isA B⊆A y }{isA B⊆A z }) IsTotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) IsTotalOrderSet A _<_ = IsTotalOrder _≡A_ _≤A_ where @@ -144,7 +148,7 @@ B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) (BX.bx<y bx) ) } PO-B : (z : ZChain A (& A) _<_ ) → IsPartialOrderSet (B z) _<_ - PO-B z = subst₂ (λ j k → IsPartialOrder j k ) {!!} {!!} {!!} where + PO-B z = subst₂ (λ j k → IsStrictPartialOrder j k ) {!!} {!!} {!!} where _<B_ = {!!} _≡B_ = {!!} -- a b = {!!} -- PO record { elm = elm a ; is-elm = incl ( B⊆A z) (is-elm a) } record { elm = elm b ; is-elm = incl ( B⊆A z) (is-elm b) }