Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 496:c03d80290855
total of B
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Apr 2022 13:56:49 +0900 |
parents | 4203ba14fd53 |
children | 2a8629b5cff9 |
files | src/zorn.agda |
diffstat | 1 files changed, 34 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 09 10:38:15 2022 +0900 +++ b/src/zorn.agda Sat Apr 09 13:56:49 2022 +0900 @@ -76,10 +76,12 @@ resp0 = Data.Product._,_ (λ {x} {y} {z} → proj₁ (IsStrictPartialOrder.<-resp-≈ PA) {isA B⊆A x } {isA B⊆A y }{isA B⊆A z }) (λ {x} {y} {z} → proj₂ (IsStrictPartialOrder.<-resp-≈ PA) {isA B⊆A x } {isA B⊆A y }{isA B⊆A z }) +open import Relation.Binary.Properties.Poset as Poset + IsTotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) -IsTotalOrderSet A _<_ = IsTotalOrder _≡A_ _≤A_ where - _≤A_ : (x y : Element A ) → Set (suc n) - x ≤A y = (elm x ≡ elm y) ∨ (elm x < elm y) +IsTotalOrderSet A _<_ = IsStrictTotalOrder _≡A_ _<A_ where + _<A_ : (x y : Element A ) → Set n + x <A y = elm x < elm y _≡A_ : (x y : Element A ) → Set (suc n) x ≡A y = elm x ≡ elm y @@ -127,8 +129,8 @@ z09 : {y : Ordinal} → (odef A y ∧ (x < (* y))) → y o< & A z09 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ - z01 {a} {b} A∋a A∋b (case1 a=b) b<a = {!!} -- proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a - z01 {a} {b} A∋a A∋b (case2 a<b) b<a = {!!} -- proj1 (proj1 (PO (me A∋b) (me A∋a)) b<a) a<b + z01 {a} {b} A∋a A∋b (case1 a=b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋a} (sym a=b) b<a + z01 {a} {b} A∋a A∋b (case2 a<b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋b} refl (IsStrictPartialOrder.trans PO {me A∋b} {me A∋a} {me A∋b} b<a a<b) -- ZChain is not compatible with the SUP condition record BX (x y : Ordinal) (fb : ( x : Ordinal ) → HOD ) : Set n where field @@ -137,8 +139,10 @@ is-fb : x ≡ & (fb bx ) bx<A : (z : ZChain A (& A) _<_ ) → {x : Ordinal } → (bx : BX x (& A) ( ZChain.fb z )) → BX.bx bx o< & A bx<A z {x} bx = BX.bx<y bx + z12 : (z : ZChain A (& A) _<_ ) → {y : Ordinal} → BX y (& A) (ZChain.fb z) → y o< & A + z12 z {y} bx = subst (λ k → k o< & A) (sym (BX.is-fb bx)) (c<→o< (ZChain.A∋fb z (BX.bx bx) (BX.bx<y bx))) B : (z : ZChain A (& A) _<_ ) → HOD - B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } + B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; <odmax = z12 z } z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) z11 z x = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) (BX.is-fb (is-elm x)) ) obx : (z : ZChain A (& A) _<_ ) → {x : HOD} → B z ∋ x → Ordinal @@ -148,31 +152,33 @@ B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) (BX.bx<y bx) ) } PO-B : (z : ZChain A (& A) _<_ ) → IsPartialOrderSet (B z) _<_ - PO-B z = subst₂ (λ j k → IsStrictPartialOrder j k ) {!!} {!!} {!!} where - _<B_ = {!!} - _≡B_ = {!!} - -- a b = {!!} -- PO record { elm = elm a ; is-elm = incl ( B⊆A z) (is-elm a) } record { elm = elm b ; is-elm = incl ( B⊆A z) (is-elm b) } + PO-B z = ⊆-IsPartialOrderSet (B⊆A z) PO bx-monotonic : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → obx z (is-elm x) o< obx z (is-elm y) → elm x < elm y bx-monotonic z {x} {y} a = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z (bx<A z (is-elm x)) (bx<A z (is-elm y)) a ) - open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) - z12 : (z : ZChain A (& A) _<_ ) → {a b : HOD } → (x : BX (& a) (& A) (ZChain.fb z)) (y : BX (& b) (& A) (ZChain.fb z)) - → obx z x ≡ obx z y → bx<A z x ≅ bx<A z y - z12 z {a} {b} x y eq = {!!} - bx-inject : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → BX.bx (is-elm x) ≡ BX.bx (is-elm y) → elm x ≡ elm y - bx-inject z {x} {y} eq = begin - elm x ≡⟨ {!!} ⟩ - {!!} ≡⟨ cong (λ k → {!!} ) {!!} ⟩ - {!!} ≡⟨ {!!} ⟩ - elm y ∎ where open ≡-Reasoning + bcmp : (z : ZChain A (& A) _<_ ) → Trichotomous (λ (x : Element (B z)) y → elm x ≡ elm y ) (λ x y → elm x < elm y ) + bcmp z x y with trio< (obx z (is-elm x)) (obx z (is-elm y)) + ... | tri< a ¬b ¬c = tri< z15 (λ eq → z01 (incl (B⊆A z) (is-elm y)) (incl (B⊆A z) (is-elm x))(case1 (sym eq)) z15 ) z17 where + z15 : elm x < elm y + z15 = bx-monotonic z {x} {y} a + z17 : elm y < elm x → ⊥ + z17 lt = z01 (incl (B⊆A z) (is-elm y)) (incl (B⊆A z) (is-elm x))(case2 lt) z15 + ... | tri≈ ¬a b ¬c = tri≈ (IsStrictPartialOrder.irrefl PO {isA (B⊆A z) x} {isA (B⊆A z) y} z14) z14 z16 where + z14 : elm x ≡ elm y + z14 = begin + elm x ≡⟨ obx=fb z (is-elm x) ⟩ + ZChain.fb z (BX.bx (is-elm x)) ≡⟨ cong (ZChain.fb z) b ⟩ + ZChain.fb z (BX.bx (is-elm y)) ≡⟨ sym ( obx=fb z (is-elm y)) ⟩ + elm y ∎ where open ≡-Reasoning + z16 = IsStrictPartialOrder.irrefl PO {isA (B⊆A z) y} {isA (B⊆A z) x} (sym z14) + ... | tri> ¬a ¬b c = tri> z17 (λ eq → z01 (incl (B⊆A z) (is-elm x)) (incl (B⊆A z) (is-elm y))(case1 eq) z15 ) z15 where + z15 : elm y < elm x + z15 = bx-monotonic z {y} {x} c + z17 : elm x < elm y → ⊥ + z17 lt = z01 (incl (B⊆A z) (is-elm x)) (incl (B⊆A z) (is-elm y))(case2 lt) z15 B-is-total : (z : ZChain A (& A) _<_ ) → IsTotalOrderSet (B z) _<_ - B-is-total = {!!} - B-Tri : (z : ZChain A (& A) _<_ ) → Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y ) - B-Tri z x y with trio< (obx z {!!}) (obx z {!!}) - ... | tri< a ¬b ¬c = {!!} where -- tri< z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where - z10 : elm x < elm y - z10 = {!!} -- bx-monotonic z {x} {y} a - ... | tri≈ ¬a b ¬c = {!!} -- tri≈ {!!} (bx-inject z {x} {y} b) {!!} - ... | tri> ¬a ¬b c = {!!} -- tri> (λ ¬a → proj1 (proj1 (PO-B z x y) ¬a ) (bx-monotonic z {y} {x} c) ) (λ eq → proj2 (proj2 (PO-B z x y) eq ) (bx-monotonic z {y} {x} c)) (bx-monotonic z {y} {x} c) + B-is-total zc = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } + ; trans = λ {x} {y} {z} x<y y<z → IsStrictPartialOrder.trans PO {isA (B⊆A zc) x} {isA (B⊆A zc) y} {isA (B⊆A zc) z} x<y y<z + ; compare = bcmp zc } ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim {!!} where z03 : & (SUP.sup sp) o< osuc (& A)