Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1296:428227847d62
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Jun 2023 12:12:29 +0900 |
parents | 503ec16e5c28 |
children | ad9ed7c4a0b3 |
files | src/Tychonoff1.agda |
diffstat | 1 files changed, 104 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Tychonoff1.agda Fri Jun 02 12:12:29 2023 +0900 @@ -0,0 +1,104 @@ +{-# OPTIONS --allow-unsolved-metas #-} +open import Level +open import Ordinals +module Tychonoff1 {n : Level } (O : Ordinals {n}) where + +open import logic +open _∧_ +open _∨_ +open Bool + +import OD +open import Relation.Nullary +open import Data.Empty +open import Relation.Binary.Core +open import Relation.Binary.Definitions +open import Relation.Binary.PropositionalEquality +import BAlgebra +open BAlgebra O +open inOrdinal O +open OD O +open OD.OD +open ODAxiom odAxiom +import OrdUtil +import ODUtil +open Ordinals.Ordinals O +open Ordinals.IsOrdinals isOrdinal +open Ordinals.IsNext isNext +open OrdUtil O +open ODUtil O + +import ODC +open ODC O + +open import filter O +open import ZProduct O +-- open import maximum-filter O + +open Filter + +Filter-Proj1 : {P Q : HOD } → + (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) + → Filter {Power P} {P} (λ x → x) +Filter-Proj1 = ? + +Filter-Proj1-UF : {P Q : HOD } → + (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) + → (FP : Filter {Power P} {P} (λ x → x) ) → ultra-filter FP +Filter-Proj1-UF = ? + +filter-⊆ : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → {x : HOD} → filter F ∋ x → { z : Ordinal } + → odef x z → odef (ZFP P Q) z +filter-⊆ {P} {Q} F {x} fx {z} xz = f⊆L F fx _ (subst (λ k → odef k z) (sym *iso) xz ) + +rcf : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → RXCod (filter F) (ZFP Q P) (λ x fx → ZPmirror P Q x (filter-⊆ F fx)) +rcf {P} {Q} F = record { ≤COD = λ {x} fx {z} ly → ZPmirror⊆ZFPBA P Q x (filter-⊆ F fx) ly } + +Filter-sym : {P Q a : HOD } → ZFP P Q ∋ a → + (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) + → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) +Filter-sym {P} {Q} {z} pqz F = + record { filter = fqp ; f⊆L = fqp<P ; filter1 = f1 ; filter2 = ? } where + fqp : HOD + fqp = Replace' (filter F) (λ x fx → ZPmirror P Q x (filter-⊆ F fx)) {ZFP Q P} (rcf F) + fqp<P : fqp ⊆ Power (ZFP Q P) + fqp<P {z} record { z = x ; az = fx ; x=ψz = x=ψz } w xw = + ZPmirror⊆ZFPBA P Q (* x) (filter-⊆ F (subst (λ k → odef (filter F) k) (sym &iso) fx )) + (subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso ) xw) + f1 : {p q : HOD} → Power (ZFP Q P) ∋ q → fqp ∋ p → p ⊆ q → fqp ∋ q + f1 {p} {q} QPq fqp p⊆q = record { z = _ ; az = fis00 {ZPmirror Q P p p⊆ZQP } {ZPmirror Q P q q⊆ZQP } fig01 fig03 fis04 + ; x=ψz = ? } where + q⊆ZQP : q ⊆ ZFP Q P + q⊆ZQP {x} qx = QPq _ (subst (λ k → odef k x) (sym *iso) qx) + p⊆ZQP : p ⊆ ZFP Q P + p⊆ZQP {z} px = q⊆ZQP (p⊆q px) + fig06 : & p ≡ & (ZPmirror P Q (* (Replaced1.z fqp)) (filter-⊆ F (subst (odef (filter F)) (sym &iso) (Replaced1.az fqp)))) + fig06 = Replaced1.x=ψz fqp + fig03 : filter F ∋ ZPmirror Q P p p⊆ZQP + fig03 with Replaced1.az fqp + ... | fz = subst (λ k → odef (filter F) k ) ? fz where + fig07 : Replaced1.z fqp ≡ & (ZPmirror Q P p (λ px → QPq x (subst (λ k → def (HOD.od k) x) (sym *iso) (p⊆q px)))) + fig07 = ? + fig01 : Power (ZFP P Q) ∋ ZPmirror Q P q q⊆ZQP + fig01 x xz = ? -- + fis00 : {p q : HOD} → Power (ZFP P Q) ∋ q → filter F ∋ p → p ⊆ q → filter F ∋ q + fis00 = filter1 F + fis04 : ZPmirror Q P p (λ z → q⊆ZQP (p⊆q z)) ⊆ ZPmirror Q P q q⊆ZQP + fis04 = ? + fis05 : & q ≡ & (ZPmirror P Q (* (& (ZPmirror Q P q q⊆ZQP))) + (filter-⊆ F (subst (odef (filter F)) (sym &iso) (fis00 fig01 fig03 fis04)))) + fis05 = ? + + + +Filter-sym-UF : {P Q : HOD } → + (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) + → (FQP : Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) ) + → ultra-filter FQP +Filter-sym-UF = ? + +Filter-Proj2 : {P Q a : HOD } → ZFP P Q ∋ a → + (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) + → Filter {Power Q} {Q} (λ x → x) +Filter-Proj2 {P} {Q} {a} pqa F = Filter-Proj1 {Q} {P} (Filter-sym pqa F ) +