Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 562:42ad203ff913
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 30 Apr 2022 14:53:04 +0900 |
parents | e0cd3ac0087d |
children | d94f90607a7c |
files | src/zorn.agda |
diffstat | 1 files changed, 44 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 30 10:48:23 2022 +0900 +++ b/src/zorn.agda Sat Apr 30 14:53:04 2022 +0900 @@ -162,6 +162,24 @@ fc12 : * y < * x fc12 = fcn-< {A} s {y} {x} {f} mf cy cx c +fcn-imm : {A : HOD} (s : Ordinal) { x y : Ordinal } (f : Ordinal → Ordinal) (mf : ≤-monotonic-f A f) + → (cx : FClosure A f s x) → (cy : FClosure A f s y ) → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) ) +fcn-imm {A} s {x} {y} f mf cx cy ⟪ x<y , y<fx ⟫ = {!!} where + fc17 : {x y : Ordinal } → (cx : FClosure A f s x) → (cy : FClosure A f s y ) → * y < * (f x ) → (y ≡ x ) ∨ ( * y < * x ) + fc17 = {!!} + fc18 : {x : Ordinal } → (cx : FClosure A f s x) → {!!} -- (y ≡ x ) ∨ ( y ≡ f x ) * x < * y → ¬ ( * y < * ( f x ) )Ljjjj + fc18 = {!!} + ncx : { x : Ordinal } → (cx : FClosure A f s x) → (cx1 : FClosure A f s (f x) ) → cx1 ≡ fsuc x cx + ncx {x} (init x₁) cx1 = {!!} + ncx {.(f x)} (fsuc x cx) cx1 = {!!} + fc16 : (x : Ordinal ) → (cx : FClosure A f s x) → (fcn s mf cx ≡ fcn s mf (fsuc x cx)) ∨ ( suc (fcn s mf cx ) ≡ fcn s mf (fsuc x cx)) + fc16 x (init sa) with proj1 (mf s sa ) + ... | case1 _ = case1 refl + ... | case2 _ = case2 refl + fc16 .(f x) (fsuc x cx ) with proj1 (mf (f x) (A∋fc s f mf (fsuc x cx)) ) + ... | case1 _ = case1 refl + ... | case2 _ = case2 refl + -- open import Relation.Binary.Properties.Poset as Poset IsTotalOrderSet : ( A : HOD ) → Set (Level.suc n) @@ -366,7 +384,7 @@ ... | case2 ¬fy<x with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) (ZChain.chain⊆A zc0 ) (ZChain.f-total zc0) ) )) ... | case1 x=sup = -- previous ordinal is a sup of a smaller ZChain record { chain = schain ; chain⊆A = record { incl = A∋schain } ; f-total = scmp ; f-next = scnext - ; initial = scinit ; f-immediate = {!!} ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = {!!} } where -- x is sup + ; initial = scinit ; f-immediate = simm ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = {!!} } where -- x is sup sup0 = supP ( ZChain.chain zc0 ) (ZChain.chain⊆A zc0 ) (ZChain.f-total zc0) sp = SUP.sup sup0 chain = ZChain.chain zc0 @@ -406,10 +424,31 @@ scinit : {x : Ordinal} → odef schain x → * y ≤ * x scinit {x} (case1 zx) = ZChain.initial zc0 zx scinit {x} (case2 sx) with (s≤fc (& sp) f mf sx ) | SUP.x<sup sup0 (subst (λ k → odef chain k ) (sym &iso) ( ZChain.chain∋x zc0 ) ) - ... | case1 sp=x | case1 y=sp = case1 {!!} - ... | case1 sp=x | case2 y<sp = case2 {!!} - ... | case2 sp<x | case1 y=sp = case2 {!!} - ... | case2 sp<x | case2 y<sp = case2 {!!} + ... | case1 sp=x | case1 y=sp = case1 (trans y=sp (subst (λ k → k ≡ * x ) *iso sp=x ) ) + ... | case1 sp=x | case2 y<sp = case2 (subst (λ k → * y < k ) (trans (sym *iso) sp=x) y<sp ) + ... | case2 sp<x | case1 y=sp = case2 (subst (λ k → k < * x ) (trans *iso (sym y=sp )) sp<x ) + ... | case2 sp<x | case2 y<sp = case2 (ptrans y<sp (subst (λ k → k < * x ) *iso sp<x) ) + A∋za : {a : Ordinal } → odef chain a → odef A a + A∋za za = (subst (λ k → odef A k ) &iso (incl (ZChain.chain⊆A zc0) (subst (λ k → odef chain k ) (sym &iso) za) ) ) + za<sup : {a : Ordinal } → odef chain a → ( * a ≡ sp ) ∨ ( * a < sp ) + za<sup za = SUP.x<sup sup0 (subst (λ k → odef chain k ) (sym &iso) za ) + simm : {a b : Ordinal} → odef schain a → odef schain b → ¬ (* a < * b) ∧ (* b < * (f a)) + simm {a} {b} (case1 za) (case1 zb) = ZChain.f-immediate zc0 za zb + simm {a} {b} (case1 za) (case2 sb) p with proj1 (mf a (A∋za za) ) + ... | case1 eq = <-irr (case2 (subst (λ k → * b < k ) (sym eq) (proj2 p))) (proj1 p) + ... | case2 a<fa with za<sup ( ZChain.f-next zc0 za ) | s≤fc (& sp) f mf sb + ... | case1 fa=sp | case1 sp=b = <-irr (case1 (trans fa=sp (trans (sym *iso) sp=b )) ) ( proj2 p ) + ... | case2 fa<sp | case1 sp=b = <-irr (case2 fa<sp) (subst (λ k → k < * (f a) ) (trans (sym sp=b) *iso) (proj2 p ) ) + ... | case1 fa=sp | case2 sp<b = <-irr (case2 (proj2 p )) (subst (λ k → k < * b) (sym fa=sp) (subst (λ k → k < * b ) *iso sp<b ) ) + ... | case2 fa<sp | case2 sp<b = <-irr (case2 (proj2 p )) (ptrans fa<sp (subst (λ k → k < * b ) *iso sp<b ) ) + simm {a} {b} (case2 sa) (case1 zb) p with proj1 (mf a ( subst (λ k → odef A k) &iso ( A∋schain (case2 (subst (λ k → FClosure A f (& sp) k ) (sym &iso) sa) )) ) ) + ... | case1 eq = <-irr (case2 (subst (λ k → * b < k ) (sym eq) (proj2 p))) (proj1 p) + ... | case2 b<fb with s≤fc (& sp) f mf sa | za<sup zb + ... | case1 sp=a | case1 b=sp = <-irr (case1 (trans b=sp (trans (sym *iso) sp=a )) ) (proj1 p ) + ... | case1 sp=a | case2 b<sp = <-irr (case2 (subst (λ k → * b < k ) (trans (sym *iso) sp=a) b<sp ) ) (proj1 p ) + ... | case2 sp<a | case1 b=sp = <-irr (case2 (subst ( λ k → k < * a ) (trans *iso (sym b=sp)) sp<a )) (proj1 p ) + ... | case2 sp<a | case2 b<sp = <-irr (case2 (ptrans b<sp (subst (λ k → k < * a) *iso sp<a ))) (proj1 p ) + simm {a} {b} (case2 sa) (case2 sb) p = {!!} ... | case2 ¬x=sup = -- x is not f y' nor sup of former ZChain from y record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = {!!} } where -- no extention