Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 419:4af94768e372
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 31 Jul 2020 12:57:59 +0900 |
parents | f6f08d5a4941 |
children | 53422a8ea836 |
files | OPair.agda ordinal.agda |
diffstat | 2 files changed, 4 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OPair.agda Fri Jul 31 12:46:45 2020 +0900 +++ b/OPair.agda Fri Jul 31 12:57:59 2020 +0900 @@ -203,12 +203,13 @@ ZFP⊗ : {A B : HOD} → ZFP A B ≡ A ⊗ B ZFP⊗ {A} {B} = ==→o≡ record { eq→ = lemma0 ; eq← = lemma1 } where + AxB : HOD + AxB = Replace B (λ b → Replace A (λ a → < a , b > )) lemma0 : {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x lemma0 {px} record { proj1 = (pair x y) ; proj2 = p2 } = product→ (d→∋ A (proj1 (p2 (pair x y) ))) (d→∋ B (proj2 (p2 (pair x y) ))) lemma1 : {x : Ordinal} → odef (A ⊗ B) x → odef (ZFP A B) x - lemma1 {x} lt = ⊥-elim (lt (λ u not → proj2 (proj1 not) (λ y p → lemma2 u y p ))) where - lemma2 : (u y : Ordinal) → odef B y ∧ (u ≡ od→ord (Replace A (λ a → < a , ord→od y >))) → ⊥ - lemma2 = {!!} + lemma1 {x} lt with union← AxB (ord→od x) (d→∋ (A ⊗ B) lt) + ... | t = {!!}
--- a/ordinal.agda Fri Jul 31 12:46:45 2020 +0900 +++ b/ordinal.agda Fri Jul 31 12:57:59 2020 +0900 @@ -244,7 +244,6 @@ lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥ lemma3 (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n - open Oprev Oprev-p : (x : Ordinal) → Dec ( Oprev (Ordinal {suc n}) osuc x ) Oprev-p (ordinal lv (Φ lv)) = no (λ not → lemma (oprev not) (oprev=x not) ) where