Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 926:4b88d9a98d20
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Oct 2022 09:35:52 +0900 |
parents | babd8ac79a91 |
children | 0f2a85826cc7 |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Oct 19 12:40:09 2022 +0900 +++ b/src/zorn.agda Thu Oct 20 09:35:52 2022 +0900 @@ -1308,11 +1308,21 @@ (supf : Ordinal → Ordinal ) → {x : Ordinal } → ZChainP f mf ay supf x → odef A x auzc f mf {y} ay supf {x} (zchain uz ucf) = proj1 ucf + zp-uz : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + (supf : Ordinal → Ordinal ) → {x : Ordinal } → ZChainP f mf ay supf x → Ordinal + zp-uz f mf ay supf (zchain uz _) = uz + + uzc⊆zc : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + (supf : Ordinal → Ordinal ) → {x : Ordinal } → (zp : ZChainP f mf ay supf x ) → UChain A f mf ay supf (zp-uz f mf ay supf zp) x + uzc⊆zc f mf {y} ay supf {x} (zchain uz ⟪ ua , ch-init fc ⟫) = ch-init fc + uzc⊆zc f mf {y} ay supf {x} (zchain uz ⟪ ua , ch-is-sup u u<x is-sup fc ⟫) with ChainP.supu=u is-sup + ... | eq = ch-is-sup u u<x is-sup fc + zc⊆uzc : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) - (supf : Ordinal → Ordinal ) → {x z ux : Ordinal } → UChain A f mf ay supf ux x → supf x o< supf z → ZChainP f mf ay supf x - zc⊆uzc f mf {y} ay supf {x} ( ch-init fc ) _ = zchain x ⟪ A∋fc y f mf fc , ch-init fc ⟫ - zc⊆uzc f mf {y} ay supf {x} {z} ( ch-is-sup u1 u1<x u1-is-sup fc ) sx<sz - = zchain z ⟪ A∋fc (supf u1) f mf fc , ch-is-sup u1 ? u1-is-sup fc ⟫ + (supf : Ordinal → Ordinal ) → {x ux : Ordinal } → UChain A f mf ay supf ux x → ZChainP f mf ay supf x + zc⊆uzc f mf {y} ay supf {x} ( ch-init fc ) = zchain x ⟪ A∋fc y f mf fc , ch-init fc ⟫ + zc⊆uzc f mf {y} ay supf {x} ( ch-is-sup u1 u1<x u1-is-sup fc ) + = zchain ? ⟪ A∋fc (supf u1) f mf fc , ch-is-sup u1 ? u1-is-sup fc ⟫ UnionZF : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal ) → HOD @@ -1322,9 +1332,10 @@ uzctotal : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) → ( supf : Ordinal → Ordinal ) → IsTotalOrderSet (UnionZF f mf ay supf ) - uzctotal f mf ay sz {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where - uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) - uz01 = ? + uzctotal f mf ay supf {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (uz01 ca cb) where + uz01 : {ua ub : Ordinal } → ZChainP f mf ay supf ua → ZChainP f mf ay supf ub + → Tri (* ua < * ub) (* ua ≡ * ub) (* ub < * ua ) + uz01 {ua} {ub} (zchain uza uca) (zchain uzb ucb) = chain-total A f mf ay supf (proj2 uca) (proj2 ucb) usp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y) → ( supf : Ordinal → Ordinal )