Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 42:4d5fc6381546
regurality
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 24 May 2019 10:28:02 +0900 |
parents | b60db5903f01 |
children | 0d9b9db14361 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 10 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Fri May 24 08:21:41 2019 +0900 +++ b/ordinal-definable.agda Fri May 24 10:28:02 2019 +0900 @@ -94,10 +94,6 @@ field mino : Ordinal {n} min<x : mino o< x - defmin : def ( ord→od x ) mino - defmin = lemma ( o<→c< min<x ) where - lemma : def (ord→od x) (od→ord ( ord→od mino)) → def ( ord→od x ) mino - lemma m< = def-subst {n} {ord→od x} m< refl diso ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Minimumo {n} x ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case1 ()) @@ -229,13 +225,17 @@ minimul : (x : OD {n} ) → ¬ x ≡ od∅ → OD {n} minimul x not = ord→od ( mino (minord x not)) minimul<x : (x : OD {n} ) → (not : ¬ x ≡ od∅ ) → x ∋ minimul x not - minimul<x x not = lemma0 where - lemma : def x (mino (minord x not)) - lemma = def-subst (defmin (minord x not)) oiso refl - lemma0 : def x (od→ord (ord→od (mino (minord x not)))) - lemma0 = def-subst {n} {x} lemma refl {!!} + minimul<x x not = lemma0 (min<x (minord x not)) where + lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) + lemma0 m<x = def-subst {n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl regularity : (x : OD) → (not : ¬ x ≡ od∅ ) → Lift (suc n) (x ∋ minimul x not ) ∧ (Select x (λ x₁ → Lift (suc n) ( minimul x not ∋ x₁) ∧ Lift (suc n) (x ∋ x₁)) ≡ od∅) proj1 ( regularity x non ) = lift ( minimul<x x non ) - proj2 ( regularity x non ) = {!!} + proj2 ( regularity x non ) = cong ( λ k → record { def = k } ) ( extensionality ( λ y → lemma0 y) ) where + lemma : ( z : Ordinal {n} ) → def (Select x (λ y → Lift (suc n) (minimul x non ∋ y) ∧ Lift (suc n) (x ∋ y))) z + lemma z with (minimul x non ∋ (ord→od z)) | x ∋ (ord→od z) + ... | s | t = {!!} + lemma0 : ( z : Ordinal {n} ) → def (Select x (λ y → Lift (suc n) (minimul x non ∋ y) ∧ Lift (suc n) (x ∋ y))) z ≡ Lift n ⊥ + lemma0 = {!!} +