Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 41:b60db5903f01
mnimul
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 24 May 2019 08:21:41 +0900 |
parents | 9439ff020cbd |
children | 4d5fc6381546 |
files | ordinal-definable.agda ordinal.agda |
diffstat | 2 files changed, 32 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Thu May 23 20:24:15 2019 +0900 +++ b/ordinal-definable.agda Fri May 24 08:21:41 2019 +0900 @@ -73,7 +73,7 @@ ... | t with t (case2 (s< s<refl ) ) c3 lx (OSuc .lx x₁) d not | t | () c3 (Suc lx) (ℵ lx) d not with not ( record { lv = Suc lx ; ord = OSuc (Suc lx) (Φ (Suc lx)) } ) - ... | t with t (case2 (s< (ℵΦ< {_} {_} {Φ (Suc lx)}))) + ... | t with t (case2 (s< ℵΦ< )) c3 .(Suc lx) (ℵ lx) d not | t | () -- find : {n : Level} → ( x : Ordinal {n} ) → o∅ o< x → Ordinal {n} @@ -90,16 +90,25 @@ lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) lemma0 dz = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) -ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Ordinal {n} +record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where + field + mino : Ordinal {n} + min<x : mino o< x + defmin : def ( ord→od x ) mino + defmin = lemma ( o<→c< min<x ) where + lemma : def (ord→od x) (od→ord ( ord→od mino)) → def ( ord→od x ) mino + lemma m< = def-subst {n} {ord→od x} m< refl diso + +ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Minimumo {n} x ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case1 ()) ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case2 ()) ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case1 ()) -ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case2 Φ<) = record { lv = Zero ; ord = Φ 0 } -ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case1 (s≤s x)) = record { lv = lv ; ord = Φ lv } +ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case2 Φ<) = record { mino = record { lv = Zero ; ord = Φ 0 } ; min<x = case2 Φ< } +ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case1 (s≤s x)) = record { mino = record { lv = lv ; ord = Φ lv } ; min<x = case1 (s≤s ≤-refl)} ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case2 ()) -ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case1 (s≤s x)) = record { lv = (Suc lv) ; ord = ord } +ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case1 (s≤s x)) = record { mino = record { lv = (Suc lv) ; ord = ord } ; min<x = case2 s<refl} ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case2 ()) -ominimal {n} record { lv = (Suc lv) ; ord = (ℵ .lv) } (case1 (s≤s z≤n)) = record { lv = lv ; ord = Φ lv } +ominimal {n} record { lv = (Suc lv) ; ord = (ℵ .lv) } (case1 (s≤s z≤n)) = record { mino = record { lv = Suc lv ; ord = Φ (Suc lv) } ; min<x = case2 ℵΦ< } ominimal {n} record { lv = (Suc lv) ; ord = (ℵ .lv) } (case2 ()) ∅4 : {n : Level} → ( x : OD {n} ) → x ≡ od∅ {n} → od→ord x ≡ o∅ {n} @@ -205,6 +214,7 @@ ; replacement = {!!} } where open _∧_ + open Minimumo pair : (A B : OD {n} ) → Lift (suc n) ((A , B) ∋ A) ∧ Lift (suc n) ((A , B) ∋ B) proj1 (pair A B ) = lift ( case1 refl ) proj2 (pair A B ) = lift ( case2 refl ) @@ -214,10 +224,18 @@ union→ X x y (lift X∋x) (lift x∋y) = lift {!!} where lemma : {z : Ordinal {n} } → def X z → z ≡ od→ord y lemma {z} X∋z = {!!} + minord : (x : OD {n} ) → ¬ x ≡ od∅ → Minimumo (od→ord x) + minord x not = ominimal (od→ord x) (∅9 x not) minimul : (x : OD {n} ) → ¬ x ≡ od∅ → OD {n} - minimul x not = ord→od ( ominimal (od→ord x) (∅9 x not) ) + minimul x not = ord→od ( mino (minord x not)) + minimul<x : (x : OD {n} ) → (not : ¬ x ≡ od∅ ) → x ∋ minimul x not + minimul<x x not = lemma0 where + lemma : def x (mino (minord x not)) + lemma = def-subst (defmin (minord x not)) oiso refl + lemma0 : def x (od→ord (ord→od (mino (minord x not)))) + lemma0 = def-subst {n} {x} lemma refl {!!} regularity : (x : OD) → (not : ¬ x ≡ od∅ ) → Lift (suc n) (x ∋ minimul x not ) ∧ (Select x (λ x₁ → Lift (suc n) ( minimul x not ∋ x₁) ∧ Lift (suc n) (x ∋ x₁)) ≡ od∅) - proj1 ( regularity x non ) = {!!} + proj1 ( regularity x non ) = lift ( minimul<x x non ) proj2 ( regularity x non ) = {!!}
--- a/ordinal.agda Thu May 23 20:24:15 2019 +0900 +++ b/ordinal.agda Fri May 24 08:21:41 2019 +0900 @@ -25,7 +25,7 @@ data _d<_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where Φ< : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d< OSuc lx x s< : {lx : Nat} → {x y : OrdinalD {n} lx} → x d< y → OSuc lx x d< OSuc lx y - ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → Φ (Suc lx) d< (ℵ lx) + ℵΦ< : {lx : Nat} → Φ (Suc lx) d< (ℵ lx) ℵ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → ¬ℵ x → OSuc (Suc lx) x d< (ℵ lx) ℵs< : {lx : Nat} → (ℵ lx) d< OSuc (Suc lx) (ℵ lx) ℵss< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → (ℵ lx) d< x → (ℵ lx) d< OSuc (Suc lx) x @@ -88,8 +88,8 @@ triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {_} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) -triOrdd {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri< (ℵΦ< {_} {lv} {Φ (Suc lv)} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {_} {lv} {Φ (Suc lv)} )) ) -triOrdd {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt (ℵΦ< {_} {lv} {Φ (Suc lv)} ) ) (λ ()) (ℵΦ< {_} {lv} {Φ (Suc lv)} ) +triOrdd {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri< ℵΦ< (λ ()) ( λ lt → trio<> lt ℵΦ<) +triOrdd {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt ℵΦ< ) (λ ()) ℵΦ< triOrdd {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y ) with triOrdd (ℵ lv) y triOrdd {_} {Suc lv} (ℵ lv) (OSuc .(Suc lv) y) | tri< a ¬b ¬c = tri< (ℵss< a) (λ ()) (trio<> (ℵss< a) ) triOrdd {_} {Suc lv} (ℵ lv) (OSuc .(Suc lv) y) | tri≈ ¬a refl ¬c = tri< ℵs< (λ ()) ( λ lt → trio<> lt ℵs< ) @@ -122,17 +122,17 @@ orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< -orddtrans {_} {Suc lx} {Φ (Suc lx)} {OSuc (Suc lx) y} {ℵ lx} Φ< (ℵ< _) = ℵΦ< {_} {lx} {y} +orddtrans {_} {Suc lx} {Φ (Suc lx)} {OSuc (Suc lx) y} {ℵ lx} Φ< (ℵ< _) = ℵΦ< orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z ) orddtrans {_} {Suc lx} {.(OSuc (Suc lx) _)} {.(OSuc (Suc lx) (Φ (Suc lx)))} {.(ℵ lx)} (s< ()) (ℵ< ¬ℵΦ) orddtrans ℵs< (ℵ< ()) orddtrans {n} {Suc lx} {OSuc (Suc lx) x} {OSuc (Suc ly) y} {ℵ _} (s< x<y) (ℵ< t) = ℵ< ( xsyℵ x<y t ) orddtrans {n} {.(Suc _)} {.(Φ (Suc _))} {.(ℵ _)} {.(OSuc (Suc _) (ℵ _))} ℵΦ< ℵs< = Φ< -orddtrans {n} {.(Suc _)} {OSuc (Suc _) .(Φ (Suc _))} {.(ℵ _)} {OSuc (Suc _) (ℵ k)} (ℵ< ¬ℵΦ) ℵs< = s< ( ℵΦ< {_} {_} {ℵ k} ) +orddtrans {n} {.(Suc _)} {OSuc (Suc _) .(Φ (Suc _))} {.(ℵ _)} {OSuc (Suc _) (ℵ k)} (ℵ< ¬ℵΦ) ℵs< = s< ℵΦ< orddtrans {n} {.(Suc _)} {OSuc (Suc lv) (OSuc (Suc _) x)} {ℵ lv} {.(OSuc (Suc _) (ℵ _))} (ℵ< (¬ℵs t)) ℵs< = s< ( ℵ< t ) orddtrans {n} {.(Suc lv)} {ℵ lv} {OSuc .(Suc lv) (ℵ lv)} {OSuc .(Suc lv) .(OSuc (Suc lv) (ℵ lv))} ℵs< (s< ℵs<) = ℵss< ℵs< orddtrans ℵΦ< (ℵss< y<z) = Φ< -orddtrans (ℵ< {lx} {Φ .(Suc lx)} nxx) (ℵss< {_} {k} y<z) = s< (orddtrans (ℵΦ< {_} {_} {k}) y<z) +orddtrans (ℵ< {lx} {Φ .(Suc lx)} nxx) (ℵss< {_} {k} y<z) = s< (orddtrans ℵΦ< y<z) orddtrans (ℵ< {lx} {OSuc .(Suc lx) xx} (¬ℵs nxx)) (ℵss< y<z) = s< (orddtrans (ℵ< nxx) y<z) orddtrans (ℵ< {.lv₁} {ℵ lv₁} ()) (ℵss< y<z) orddtrans (ℵss< x<y) (s< y<z) = ℵss< ( orddtrans x<y y<z )