Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1166:4e0a1f41910f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 21 Jan 2023 13:16:27 +0900 |
parents | 70bcb775115a |
children | fee9249a2f50 |
files | src/Topology.agda |
diffstat | 1 files changed, 21 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Jan 21 12:11:36 2023 +0900 +++ b/src/Topology.agda Sat Jan 21 13:16:27 2023 +0900 @@ -538,9 +538,9 @@ uf00 {X} CSX fp = UFLP.limit ( uflp (λ x → x) ( MaximumFilter.mf (maxf CSX fp) ) (F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp))) - uf01 : {X : Ordinal} (CX : * X ⊆ CS TP) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) - {x : Ordinal} → odef (* X) x → odef (* x) (uf00 CX fip) - uf01 = ? + uf01 : {X : Ordinal} (CSX : * X ⊆ CS TP) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) + {x : Ordinal} → odef (* X) x → odef (* x) (uf00 CSX fip) + uf01 {X} CSX fp {x} xx = ? FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F UF @@ -567,7 +567,7 @@ -- Product of UFL has limit point uflPQ : {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) LPQ F UF - uflPQ {L} LPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where + uflPQ {L} LPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , * ( UFLP.limit uflq ) > ; P∋limit = Pf ; is-limit = isL } where LP : HOD -- proj1 of LPQ LP = Proj1 L (Power P) (Power Q) LPP : LP ⊆ Power P @@ -582,5 +582,22 @@ uflp : UFLP TP LPP FP UFP uflp = FIP→UFLP TP (Compact→FIP TP CP) LPP FP UFP + LQ : HOD -- proj1 of LPQ + LQ = Proj2 L (Power P) (Power Q) + LQP : LQ ⊆ Power Q + LQP {x} ⟪ Qx , q1 ⟫ = Qx + FQ : Filter {LQ} {Q} LQP + FQ = record { filter = Proj2 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where + ty00 : Proj2 (filter F) (Power P) (Power Q) ⊆ LQ + ty00 {x} ⟪ QPx , ppf ⟫ = ⟪ QPx , ( λ y → record { pq = ZProj2.pq (ppf y) + ; opq = ZProj2.opq (ppf y) ; Lpq = f⊆L F (ZProj2.Lpq (ppf y)) ; x=pi2 = ZProj2.x=pi2 (ppf y) } ) ⟫ + UFQ : ultra-filter FQ + UFQ = record { proper = ? ; ultra = ? } + uflq : UFLP TQ LQP FQ UFQ + uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) LQP FQ UFQ + Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) + Pf = ? + isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → filter F ⊆ * v + isL {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } {x} fx = ?