Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1165:70bcb775115a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 21 Jan 2023 12:11:36 +0900 |
parents | 5e065f0a7ba2 |
children | 4e0a1f41910f |
files | src/Topology.agda |
diffstat | 1 files changed, 18 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Jan 21 09:12:10 2023 +0900 +++ b/src/Topology.agda Sat Jan 21 12:11:36 2023 +0900 @@ -481,6 +481,10 @@ open import maximum-filter O +CAP : (P : HOD) {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q) +CAP P {p} {q} Pp Pq x pqx with subst (λ k → odef k x ) *iso pqx +... | ⟪ px , qx ⟫ = Pp _ (subst (λ k → odef k x) (sym *iso) px ) + UFLP→FIP : {P : HOD} (TP : Topology P) → ( {L : HOD} (LP : L ⊆ Power P ) → (F : Filter {L} {P} LP ) (UF : ultra-filter F ) → UFLP TP LP F UF ) → FIP TP UFLP→FIP {P} TP uflp with trio< (& P) o∅ @@ -489,7 +493,7 @@ -- P is empty fip02 : {x : Ordinal } → ¬ odef P x fip02 {x} Px = ⊥-elim ( o<¬≡ (sym b) (∈∅< Px) ) -... | tri> ¬a ¬b 0<P = record { limit = uf00 ; is-limit = {!!} } where +... | tri> ¬a ¬b 0<P = record { limit = uf00 ; is-limit = uf01 } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {u x : Ordinal} → * u ⊆ * X → Subbase (* u) x → o∅ o< x N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD @@ -497,6 +501,12 @@ ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (FBase.u⊆P lt)) } N⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ Power P N⊆PP CSX fp nx b xb = FBase.u⊆P nx xb + nc : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → HOD + nc = ? + N∋nc :{X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → odef (N CSX fp) (& (nc CSX fp) ) + N∋nc = ? + 0<PP : o∅ o< & (Power P) + 0<PP = ? F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → Filter {Power P} {P} (λ x → x) F {X} CSX fp = record { filter = N CSX fp ; f⊆L = N⊆PP CSX fp ; filter1 = f1 ; filter2 = f2 } where f1 : {p q : HOD} → Power P ∋ q → N CSX fp ∋ p → p ⊆ q → N CSX fp ∋ q @@ -522,15 +532,15 @@ → ⟪ subst (λ k → odef k w) *iso ( FBase.x⊆u Np (proj1 xpq)) , subst (λ k → odef k w) *iso ( FBase.x⊆u Nq (proj2 xpq)) ⟫ ) proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ¬ (N CSX fp ∋ od∅) proper = ? - CAP : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q) - CAP {X} CSX fp {p} {q} Pp Pq x pqx with subst (λ k → odef k x ) *iso pqx - ... | ⟪ px , qx ⟫ = Pp _ (subst (λ k → odef k x) (sym *iso) px ) maxf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) - maxf {X} CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP CSX fp) (F CSX fp) ? ? (proper CSX fp) + maxf {X} CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp) uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal uf00 {X} CSX fp = UFLP.limit ( uflp (λ x → x) ( MaximumFilter.mf (maxf CSX fp) ) - (F→ultra {Power P} {P} (λ x → x) (CAP CSX fp) (F CSX fp) ? ? (proper CSX fp))) + (F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp))) + uf01 : {X : Ordinal} (CX : * X ⊆ CS TP) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) + {x : Ordinal} → odef (* X) x → odef (* x) (uf00 CX fip) + uf01 = ? FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F UF @@ -541,32 +551,8 @@ CF⊆CS {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (CS TP) k) (sym x=ψz) (CS∋Cl TP (* z)) ufl01 : {C x : Ordinal} → * C ⊆ * (& CF) → Subbase (* C) x → o∅ o< x ufl01 = ? - ufl00 : {v : Ordinal} → Neighbor TP (FIP.limit fip ? ?) v → filter F ⊆ * v - ufl00 {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } = ? - -FilterProduct : {P Q LP LQ : HOD } - → (LPP : LP ⊆ Power P) (FP : Filter {LP} LPP) - → (LPQ : LQ ⊆ Power Q) (FQ : Filter {LQ} LPQ) - → Filter {ZFP LP LQ} ? -FilterProduct = ? - -FilterProj : {P Q LPQ : HOD } - → ( LPPQ : LPQ ⊆ Power (ZFP P Q)) - → Filter {LPQ} LPPQ - → (Filter {Proj1 LPQ (Power P) (Power Q)} ?) ∧ (Filter {Proj2 LPQ (Power P) (Power Q)} ?) -FilterProj = ? - -ProuctLimit→ProjLimit : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) - → ( {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) LPQ F UF ) - → ( {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TP LP F UF) - ∧ ( {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TQ LP F UF) -ProuctLimit→ProjLimit = ? - -ProjLimit→ProductLimit : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) - → ( {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TP LP F UF) - ∧ ( {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) → UFLP TQ LP F UF) - → {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) LPQ F UF -ProjLimit→ProductLimit = ? + ufl00 : {v : Ordinal} → Neighbor TP (FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 ) v → filter F ⊆ * v + ufl00 {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } {x} fx = ? -- product topology of compact topology is compact