Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1295:503ec16e5c28
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Jun 2023 12:04:43 +0900 |
parents | 968feed7cf64 |
children | 428227847d62 |
files | src/ZProduct.agda |
diffstat | 1 files changed, 6 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ZProduct.agda Fri Jun 02 08:52:13 2023 +0900 +++ b/src/ZProduct.agda Fri Jun 02 12:04:43 2023 +0900 @@ -372,6 +372,12 @@ lemma1 : & < * b , * a > o< osuc (& (Power (Union (B , A)))) lemma1 = ⊆→o≤ (ZFP<AB (subst (λ k → odef B k) (sym &iso) bb) (subst (λ k → odef A k) (sym &iso) aa) ) +ZPmirror⊆ZFPBA : (A B C : HOD) → (cab : C ⊆ ZFP A B ) → ZPmirror A B C cab ⊆ ZFP B A +ZPmirror⊆ZFPBA A B C cab {z} record { a = a ; b = b ; aa = aa ; bb = bb ; c∋ab = c∋ab ; x=ba = x=ba } + = subst (λ k → odef (ZFP B A) k) (sym x=ba) lemma2 where + lemma2 : odef (ZFP B A) (& < * b , * a > ) + lemma2 = ZFP→ (subst (λ k → odef B k ) (sym &iso) bb) (subst (λ k → odef A k ) (sym &iso) aa) + ZPmirror-iso : (A B C : HOD) → (cab : C ⊆ ZFP A B ) → ( {x y : HOD} → C ∋ < x , y > → ZPmirror A B C cab ∋ < y , x > ) ∧ ( {x y : HOD} → ZPmirror A B C cab ∋ < y , x > → C ∋ < x , y > ) ZPmirror-iso A B C cab = ⟪ zs00 refl , zs01 ⟫ where